import gradio as gr import torch from transformers import RagRetriever, RagSequenceForGeneration # Load model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dataset_path = "./5k_index_data/my_knowledge_dataset" index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss" retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom", passages_path = dataset_path, index_path = index_path, n_docs = 5) rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever) rag_model.retriever.init_retrieval() rag_model.to(device) def strip_title(title): if title.startswith('"'): title = title[1:] if title.endswith('"'): title = title[:-1] return title def retrieved_info(query, rag_model = rag_model): # Tokenize query retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( [query], return_tensors="pt", padding=True, truncation=True, )["input_ids"].to(device) # Retrieve documents question_enc_outputs = rag_model.rag.question_encoder(retriever_input_ids) question_enc_pool_output = question_enc_outputs[0] result = rag_model.retriever( retriever_input_ids, question_enc_pool_output.cpu().detach().to(torch.float32).numpy(), prefix=rag_model.rag.generator.config.prefix, n_docs=rag_model.config.n_docs, return_tensors="pt", ) # Display retrieved documents including URLs all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids) retrieved_context = [] for docs in all_docs: titles = [strip_title(title) for title in docs["title"]] texts = docs["text"] for title, text in zip(titles, texts): retrieved_context.append(f"{title}: {text}") answer = retrieved_context return answer def respond( message, history: list[tuple[str, str]], system_message, max_tokens , temperature, top_p, ): if message: # If there's a user query response = retrieved_info(message) # Get the answer from local FAISS and Q&A model return response[0] # In case no message, return an empty string return "" # Custom title and description title = "🧠 Welcome to Your AI Knowledge Assistant" description = """ HI!!, I am your loyal assistant, My functionality is based on RAG model, I retrieves relevant information and provide answers based on that. Ask me any question, and let me assist you. My capabilities are limited because I am still in development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN...... """ demo = gr.ChatInterface( respond, type = 'messages', additional_inputs=[ gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], title=title, description=description, submit_btn = True, textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]), examples=[["✨Future of AI"], ["📱App Development"]], #example_icons=["🤖", "📱"], theme="compact", ) if __name__ == "__main__": demo.launch(share = True )