|
import importlib |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
import torch.distributed as dist |
|
|
|
|
|
def count_params(model, verbose=False): |
|
total_params = sum(p.numel() for p in model.parameters()) |
|
if verbose: |
|
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") |
|
return total_params |
|
|
|
|
|
def check_istarget(name, para_list): |
|
""" |
|
name: full name of source para |
|
para_list: partial name of target para |
|
""" |
|
istarget=False |
|
for para in para_list: |
|
if para in name: |
|
return True |
|
return istarget |
|
|
|
|
|
def instantiate_from_config(config): |
|
if not "target" in config: |
|
if config == '__is_first_stage__': |
|
return None |
|
elif config == "__is_unconditional__": |
|
return None |
|
raise KeyError("Expected key `target` to instantiate.") |
|
return get_obj_from_str(config["target"])(**config.get("params", dict())) |
|
|
|
|
|
def get_obj_from_str(string, reload=False): |
|
module, cls = string.rsplit(".", 1) |
|
if reload: |
|
module_imp = importlib.import_module(module) |
|
importlib.reload(module_imp) |
|
return getattr(importlib.import_module(module, package=None), cls) |
|
|
|
|
|
def load_npz_from_dir(data_dir): |
|
data = [np.load(os.path.join(data_dir, data_name))['arr_0'] for data_name in os.listdir(data_dir)] |
|
data = np.concatenate(data, axis=0) |
|
return data |
|
|
|
|
|
def load_npz_from_paths(data_paths): |
|
data = [np.load(data_path)['arr_0'] for data_path in data_paths] |
|
data = np.concatenate(data, axis=0) |
|
return data |
|
|
|
|
|
def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None): |
|
h, w = image.shape[:2] |
|
if resize_short_edge is not None: |
|
k = resize_short_edge / min(h, w) |
|
else: |
|
k = max_resolution / (h * w) |
|
k = k**0.5 |
|
h = int(np.round(h * k / 64)) * 64 |
|
w = int(np.round(w * k / 64)) * 64 |
|
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) |
|
return image |
|
|
|
|
|
def setup_dist(args): |
|
if dist.is_initialized(): |
|
return |
|
torch.cuda.set_device(args.local_rank) |
|
torch.distributed.init_process_group( |
|
'nccl', |
|
init_method='env://' |
|
) |