|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ..utils import USE_PEFT_BACKEND |
|
from .lora import LoRACompatibleConv |
|
from .normalization import RMSNorm |
|
|
|
|
|
class Upsample1D(nn.Module): |
|
"""A 1D upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
use_conv_transpose (`bool`, default `False`): |
|
option to use a convolution transpose. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
name (`str`, default `conv`): |
|
name of the upsampling 1D layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = False, |
|
use_conv_transpose: bool = False, |
|
out_channels: Optional[int] = None, |
|
name: str = "conv", |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_conv_transpose = use_conv_transpose |
|
self.name = name |
|
|
|
self.conv = None |
|
if use_conv_transpose: |
|
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1) |
|
elif use_conv: |
|
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1) |
|
|
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
|
assert inputs.shape[1] == self.channels |
|
if self.use_conv_transpose: |
|
return self.conv(inputs) |
|
|
|
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest") |
|
|
|
if self.use_conv: |
|
outputs = self.conv(outputs) |
|
|
|
return outputs |
|
|
|
|
|
class Upsample2D(nn.Module): |
|
"""A 2D upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
use_conv_transpose (`bool`, default `False`): |
|
option to use a convolution transpose. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
name (`str`, default `conv`): |
|
name of the upsampling 2D layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = False, |
|
use_conv_transpose: bool = False, |
|
out_channels: Optional[int] = None, |
|
name: str = "conv", |
|
kernel_size: Optional[int] = None, |
|
padding=1, |
|
norm_type=None, |
|
eps=None, |
|
elementwise_affine=None, |
|
bias=True, |
|
interpolate=True, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_conv_transpose = use_conv_transpose |
|
self.name = name |
|
self.interpolate = interpolate |
|
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv |
|
|
|
if norm_type == "ln_norm": |
|
self.norm = nn.LayerNorm(channels, eps, elementwise_affine) |
|
elif norm_type == "rms_norm": |
|
self.norm = RMSNorm(channels, eps, elementwise_affine) |
|
elif norm_type is None: |
|
self.norm = None |
|
else: |
|
raise ValueError(f"unknown norm_type: {norm_type}") |
|
|
|
conv = None |
|
if use_conv_transpose: |
|
if kernel_size is None: |
|
kernel_size = 4 |
|
conv = nn.ConvTranspose2d( |
|
channels, self.out_channels, kernel_size=kernel_size, stride=2, padding=padding, bias=bias |
|
) |
|
elif use_conv: |
|
if kernel_size is None: |
|
kernel_size = 3 |
|
conv = conv_cls(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias) |
|
|
|
|
|
if name == "conv": |
|
self.conv = conv |
|
else: |
|
self.Conv2d_0 = conv |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
output_size: Optional[int] = None, |
|
scale: float = 1.0, |
|
) -> torch.FloatTensor: |
|
assert hidden_states.shape[1] == self.channels |
|
|
|
if self.norm is not None: |
|
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) |
|
|
|
if self.use_conv_transpose: |
|
return self.conv(hidden_states) |
|
|
|
|
|
|
|
|
|
dtype = hidden_states.dtype |
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(torch.float32) |
|
|
|
|
|
if hidden_states.shape[0] >= 64: |
|
hidden_states = hidden_states.contiguous() |
|
|
|
|
|
|
|
if self.interpolate: |
|
if output_size is None: |
|
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") |
|
else: |
|
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") |
|
|
|
|
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(dtype) |
|
|
|
|
|
if self.use_conv: |
|
if self.name == "conv": |
|
if isinstance(self.conv, LoRACompatibleConv) and not USE_PEFT_BACKEND: |
|
hidden_states = self.conv(hidden_states, scale) |
|
else: |
|
hidden_states = self.conv(hidden_states) |
|
else: |
|
if isinstance(self.Conv2d_0, LoRACompatibleConv) and not USE_PEFT_BACKEND: |
|
hidden_states = self.Conv2d_0(hidden_states, scale) |
|
else: |
|
hidden_states = self.Conv2d_0(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class FirUpsample2D(nn.Module): |
|
"""A 2D FIR upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`, optional): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
fir_kernel (`tuple`, default `(1, 3, 3, 1)`): |
|
kernel for the FIR filter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
use_conv: bool = False, |
|
fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1), |
|
): |
|
super().__init__() |
|
out_channels = out_channels if out_channels else channels |
|
if use_conv: |
|
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
self.use_conv = use_conv |
|
self.fir_kernel = fir_kernel |
|
self.out_channels = out_channels |
|
|
|
def _upsample_2d( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
weight: Optional[torch.FloatTensor] = None, |
|
kernel: Optional[torch.FloatTensor] = None, |
|
factor: int = 2, |
|
gain: float = 1, |
|
) -> torch.FloatTensor: |
|
"""Fused `upsample_2d()` followed by `Conv2d()`. |
|
|
|
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more |
|
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of |
|
arbitrary order. |
|
|
|
Args: |
|
hidden_states (`torch.FloatTensor`): |
|
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. |
|
weight (`torch.FloatTensor`, *optional*): |
|
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be |
|
performed by `inChannels = x.shape[0] // numGroups`. |
|
kernel (`torch.FloatTensor`, *optional*): |
|
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which |
|
corresponds to nearest-neighbor upsampling. |
|
factor (`int`, *optional*): Integer upsampling factor (default: 2). |
|
gain (`float`, *optional*): Scaling factor for signal magnitude (default: 1.0). |
|
|
|
Returns: |
|
output (`torch.FloatTensor`): |
|
Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same |
|
datatype as `hidden_states`. |
|
""" |
|
|
|
assert isinstance(factor, int) and factor >= 1 |
|
|
|
|
|
if kernel is None: |
|
kernel = [1] * factor |
|
|
|
|
|
kernel = torch.tensor(kernel, dtype=torch.float32) |
|
if kernel.ndim == 1: |
|
kernel = torch.outer(kernel, kernel) |
|
kernel /= torch.sum(kernel) |
|
|
|
kernel = kernel * (gain * (factor**2)) |
|
|
|
if self.use_conv: |
|
convH = weight.shape[2] |
|
convW = weight.shape[3] |
|
inC = weight.shape[1] |
|
|
|
pad_value = (kernel.shape[0] - factor) - (convW - 1) |
|
|
|
stride = (factor, factor) |
|
|
|
output_shape = ( |
|
(hidden_states.shape[2] - 1) * factor + convH, |
|
(hidden_states.shape[3] - 1) * factor + convW, |
|
) |
|
output_padding = ( |
|
output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH, |
|
output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW, |
|
) |
|
assert output_padding[0] >= 0 and output_padding[1] >= 0 |
|
num_groups = hidden_states.shape[1] // inC |
|
|
|
|
|
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW)) |
|
weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4) |
|
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW)) |
|
|
|
inverse_conv = F.conv_transpose2d( |
|
hidden_states, |
|
weight, |
|
stride=stride, |
|
output_padding=output_padding, |
|
padding=0, |
|
) |
|
|
|
output = upfirdn2d_native( |
|
inverse_conv, |
|
torch.tensor(kernel, device=inverse_conv.device), |
|
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1), |
|
) |
|
else: |
|
pad_value = kernel.shape[0] - factor |
|
output = upfirdn2d_native( |
|
hidden_states, |
|
torch.tensor(kernel, device=hidden_states.device), |
|
up=factor, |
|
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), |
|
) |
|
|
|
return output |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
if self.use_conv: |
|
height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel) |
|
height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1) |
|
else: |
|
height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) |
|
|
|
return height |
|
|
|
|
|
class KUpsample2D(nn.Module): |
|
r"""A 2D K-upsampling layer. |
|
|
|
Parameters: |
|
pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use. |
|
""" |
|
|
|
def __init__(self, pad_mode: str = "reflect"): |
|
super().__init__() |
|
self.pad_mode = pad_mode |
|
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2 |
|
self.pad = kernel_1d.shape[1] // 2 - 1 |
|
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False) |
|
|
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
|
inputs = F.pad(inputs, ((self.pad + 1) // 2,) * 4, self.pad_mode) |
|
weight = inputs.new_zeros( |
|
[ |
|
inputs.shape[1], |
|
inputs.shape[1], |
|
self.kernel.shape[0], |
|
self.kernel.shape[1], |
|
] |
|
) |
|
indices = torch.arange(inputs.shape[1], device=inputs.device) |
|
kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1) |
|
weight[indices, indices] = kernel |
|
return F.conv_transpose2d(inputs, weight, stride=2, padding=self.pad * 2 + 1) |
|
|
|
|
|
def upfirdn2d_native( |
|
tensor: torch.Tensor, |
|
kernel: torch.Tensor, |
|
up: int = 1, |
|
down: int = 1, |
|
pad: Tuple[int, int] = (0, 0), |
|
) -> torch.Tensor: |
|
up_x = up_y = up |
|
down_x = down_y = down |
|
pad_x0 = pad_y0 = pad[0] |
|
pad_x1 = pad_y1 = pad[1] |
|
|
|
_, channel, in_h, in_w = tensor.shape |
|
tensor = tensor.reshape(-1, in_h, in_w, 1) |
|
|
|
_, in_h, in_w, minor = tensor.shape |
|
kernel_h, kernel_w = kernel.shape |
|
|
|
out = tensor.view(-1, in_h, 1, in_w, 1, minor) |
|
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) |
|
out = out.view(-1, in_h * up_y, in_w * up_x, minor) |
|
|
|
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) |
|
out = out.to(tensor.device) |
|
out = out[ |
|
:, |
|
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), |
|
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), |
|
:, |
|
] |
|
|
|
out = out.permute(0, 3, 1, 2) |
|
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) |
|
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) |
|
out = F.conv2d(out, w) |
|
out = out.reshape( |
|
-1, |
|
minor, |
|
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, |
|
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, |
|
) |
|
out = out.permute(0, 2, 3, 1) |
|
out = out[:, ::down_y, ::down_x, :] |
|
|
|
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 |
|
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 |
|
|
|
return out.view(-1, channel, out_h, out_w) |
|
|
|
|
|
def upsample_2d( |
|
hidden_states: torch.FloatTensor, |
|
kernel: Optional[torch.FloatTensor] = None, |
|
factor: int = 2, |
|
gain: float = 1, |
|
) -> torch.FloatTensor: |
|
r"""Upsample2D a batch of 2D images with the given filter. |
|
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given |
|
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified |
|
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is |
|
a: multiple of the upsampling factor. |
|
|
|
Args: |
|
hidden_states (`torch.FloatTensor`): |
|
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. |
|
kernel (`torch.FloatTensor`, *optional*): |
|
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which |
|
corresponds to nearest-neighbor upsampling. |
|
factor (`int`, *optional*, default to `2`): |
|
Integer upsampling factor. |
|
gain (`float`, *optional*, default to `1.0`): |
|
Scaling factor for signal magnitude (default: 1.0). |
|
|
|
Returns: |
|
output (`torch.FloatTensor`): |
|
Tensor of the shape `[N, C, H * factor, W * factor]` |
|
""" |
|
assert isinstance(factor, int) and factor >= 1 |
|
if kernel is None: |
|
kernel = [1] * factor |
|
|
|
kernel = torch.tensor(kernel, dtype=torch.float32) |
|
if kernel.ndim == 1: |
|
kernel = torch.outer(kernel, kernel) |
|
kernel /= torch.sum(kernel) |
|
|
|
kernel = kernel * (gain * (factor**2)) |
|
pad_value = kernel.shape[0] - factor |
|
output = upfirdn2d_native( |
|
hidden_states, |
|
kernel.to(device=hidden_states.device), |
|
up=factor, |
|
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), |
|
) |
|
return output |
|
|