|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch - Flax general utilities.""" |
|
|
|
from pickle import UnpicklingError |
|
|
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
from flax.serialization import from_bytes |
|
from flax.traverse_util import flatten_dict |
|
|
|
from ..utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_flax_checkpoint_in_pytorch_model(pt_model, model_file): |
|
try: |
|
with open(model_file, "rb") as flax_state_f: |
|
flax_state = from_bytes(None, flax_state_f.read()) |
|
except UnpicklingError as e: |
|
try: |
|
with open(model_file) as f: |
|
if f.read().startswith("version"): |
|
raise OSError( |
|
"You seem to have cloned a repository without having git-lfs installed. Please" |
|
" install git-lfs and run `git lfs install` followed by `git lfs pull` in the" |
|
" folder you cloned." |
|
) |
|
else: |
|
raise ValueError from e |
|
except (UnicodeDecodeError, ValueError): |
|
raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. ") |
|
|
|
return load_flax_weights_in_pytorch_model(pt_model, flax_state) |
|
|
|
|
|
def load_flax_weights_in_pytorch_model(pt_model, flax_state): |
|
"""Load flax checkpoints in a PyTorch model""" |
|
|
|
try: |
|
import torch |
|
except ImportError: |
|
logger.error( |
|
"Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" |
|
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" |
|
" instructions." |
|
) |
|
raise |
|
|
|
|
|
is_type_bf16 = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).values() |
|
if any(is_type_bf16): |
|
|
|
|
|
|
|
logger.warning( |
|
"Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " |
|
"before loading those in PyTorch model." |
|
) |
|
flax_state = jax.tree_util.tree_map( |
|
lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state |
|
) |
|
|
|
pt_model.base_model_prefix = "" |
|
|
|
flax_state_dict = flatten_dict(flax_state, sep=".") |
|
pt_model_dict = pt_model.state_dict() |
|
|
|
|
|
unexpected_keys = [] |
|
missing_keys = set(pt_model_dict.keys()) |
|
|
|
for flax_key_tuple, flax_tensor in flax_state_dict.items(): |
|
flax_key_tuple_array = flax_key_tuple.split(".") |
|
|
|
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: |
|
flax_key_tuple_array = flax_key_tuple_array[:-1] + ["weight"] |
|
flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1)) |
|
elif flax_key_tuple_array[-1] == "kernel": |
|
flax_key_tuple_array = flax_key_tuple_array[:-1] + ["weight"] |
|
flax_tensor = flax_tensor.T |
|
elif flax_key_tuple_array[-1] == "scale": |
|
flax_key_tuple_array = flax_key_tuple_array[:-1] + ["weight"] |
|
|
|
if "time_embedding" not in flax_key_tuple_array: |
|
for i, flax_key_tuple_string in enumerate(flax_key_tuple_array): |
|
flax_key_tuple_array[i] = ( |
|
flax_key_tuple_string.replace("_0", ".0") |
|
.replace("_1", ".1") |
|
.replace("_2", ".2") |
|
.replace("_3", ".3") |
|
.replace("_4", ".4") |
|
.replace("_5", ".5") |
|
.replace("_6", ".6") |
|
.replace("_7", ".7") |
|
.replace("_8", ".8") |
|
.replace("_9", ".9") |
|
) |
|
|
|
flax_key = ".".join(flax_key_tuple_array) |
|
|
|
if flax_key in pt_model_dict: |
|
if flax_tensor.shape != pt_model_dict[flax_key].shape: |
|
raise ValueError( |
|
f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " |
|
f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." |
|
) |
|
else: |
|
|
|
flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor |
|
pt_model_dict[flax_key] = torch.from_numpy(flax_tensor) |
|
|
|
missing_keys.remove(flax_key) |
|
else: |
|
|
|
unexpected_keys.append(flax_key) |
|
|
|
pt_model.load_state_dict(pt_model_dict) |
|
|
|
|
|
missing_keys = list(missing_keys) |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
"Some weights of the Flax model were not used when initializing the PyTorch model" |
|
f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" |
|
f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" |
|
" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" |
|
f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" |
|
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" |
|
" FlaxBertForSequenceClassification model)." |
|
) |
|
if len(missing_keys) > 0: |
|
logger.warning( |
|
f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" |
|
f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" |
|
" use it for predictions and inference." |
|
) |
|
|
|
return pt_model |
|
|