|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Optional |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
|
|
from ..utils import USE_PEFT_BACKEND |
|
from .activations import get_activation |
|
from .attention_processor import Attention |
|
from .lora import LoRACompatibleLinear |
|
|
|
|
|
def get_timestep_embedding( |
|
timesteps: torch.Tensor, |
|
embedding_dim: int, |
|
flip_sin_to_cos: bool = False, |
|
downscale_freq_shift: float = 1, |
|
scale: float = 1, |
|
max_period: int = 10000, |
|
): |
|
""" |
|
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. |
|
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the |
|
embeddings. :return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" |
|
|
|
half_dim = embedding_dim // 2 |
|
exponent = -math.log(max_period) * torch.arange( |
|
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device |
|
) |
|
exponent = exponent / (half_dim - downscale_freq_shift) |
|
|
|
emb = torch.exp(exponent) |
|
emb = timesteps[:, None].float() * emb[None, :] |
|
|
|
|
|
emb = scale * emb |
|
|
|
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) |
|
|
|
|
|
if flip_sin_to_cos: |
|
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) |
|
|
|
|
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) |
|
return emb |
|
|
|
|
|
def get_2d_sincos_pos_embed( |
|
embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16 |
|
): |
|
""" |
|
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or |
|
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
if isinstance(grid_size, int): |
|
grid_size = (grid_size, grid_size) |
|
|
|
grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale |
|
grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token and extra_tokens > 0: |
|
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
if embed_dim % 2 != 0: |
|
raise ValueError("embed_dim must be divisible by 2") |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) |
|
""" |
|
if embed_dim % 2 != 0: |
|
raise ValueError("embed_dim must be divisible by 2") |
|
|
|
omega = np.arange(embed_dim // 2, dtype=np.float64) |
|
omega /= embed_dim / 2.0 |
|
omega = 1.0 / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum("m,d->md", pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""2D Image to Patch Embedding""" |
|
|
|
def __init__( |
|
self, |
|
height=224, |
|
width=224, |
|
patch_size=16, |
|
in_channels=3, |
|
embed_dim=768, |
|
layer_norm=False, |
|
flatten=True, |
|
bias=True, |
|
interpolation_scale=1, |
|
): |
|
super().__init__() |
|
|
|
num_patches = (height // patch_size) * (width // patch_size) |
|
self.flatten = flatten |
|
self.layer_norm = layer_norm |
|
|
|
self.proj = nn.Conv2d( |
|
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias |
|
) |
|
if layer_norm: |
|
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6) |
|
else: |
|
self.norm = None |
|
|
|
self.patch_size = patch_size |
|
|
|
|
|
self.height, self.width = height // patch_size, width // patch_size |
|
self.base_size = height // patch_size |
|
self.interpolation_scale = interpolation_scale |
|
pos_embed = get_2d_sincos_pos_embed( |
|
embed_dim, int(num_patches**0.5), base_size=self.base_size, interpolation_scale=self.interpolation_scale |
|
) |
|
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False) |
|
|
|
def forward(self, latent): |
|
height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size |
|
|
|
latent = self.proj(latent) |
|
if self.flatten: |
|
latent = latent.flatten(2).transpose(1, 2) |
|
if self.layer_norm: |
|
latent = self.norm(latent) |
|
|
|
|
|
|
|
if self.height != height or self.width != width: |
|
pos_embed = get_2d_sincos_pos_embed( |
|
embed_dim=self.pos_embed.shape[-1], |
|
grid_size=(height, width), |
|
base_size=self.base_size, |
|
interpolation_scale=self.interpolation_scale, |
|
) |
|
pos_embed = torch.from_numpy(pos_embed) |
|
pos_embed = pos_embed.float().unsqueeze(0).to(latent.device) |
|
else: |
|
pos_embed = self.pos_embed |
|
|
|
return (latent + pos_embed).to(latent.dtype) |
|
|
|
|
|
class TimestepEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
time_embed_dim: int, |
|
act_fn: str = "silu", |
|
out_dim: int = None, |
|
post_act_fn: Optional[str] = None, |
|
cond_proj_dim=None, |
|
sample_proj_bias=True, |
|
): |
|
super().__init__() |
|
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear |
|
|
|
self.linear_1 = linear_cls(in_channels, time_embed_dim, sample_proj_bias) |
|
|
|
if cond_proj_dim is not None: |
|
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) |
|
else: |
|
self.cond_proj = None |
|
|
|
self.act = get_activation(act_fn) |
|
|
|
if out_dim is not None: |
|
time_embed_dim_out = out_dim |
|
else: |
|
time_embed_dim_out = time_embed_dim |
|
self.linear_2 = linear_cls(time_embed_dim, time_embed_dim_out, sample_proj_bias) |
|
|
|
if post_act_fn is None: |
|
self.post_act = None |
|
else: |
|
self.post_act = get_activation(post_act_fn) |
|
|
|
def forward(self, sample, condition=None): |
|
if condition is not None: |
|
sample = sample + self.cond_proj(condition) |
|
sample = self.linear_1(sample) |
|
|
|
if self.act is not None: |
|
sample = self.act(sample) |
|
|
|
sample = self.linear_2(sample) |
|
|
|
if self.post_act is not None: |
|
sample = self.post_act(sample) |
|
return sample |
|
|
|
|
|
class Timesteps(nn.Module): |
|
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float): |
|
super().__init__() |
|
self.num_channels = num_channels |
|
self.flip_sin_to_cos = flip_sin_to_cos |
|
self.downscale_freq_shift = downscale_freq_shift |
|
|
|
def forward(self, timesteps): |
|
t_emb = get_timestep_embedding( |
|
timesteps, |
|
self.num_channels, |
|
flip_sin_to_cos=self.flip_sin_to_cos, |
|
downscale_freq_shift=self.downscale_freq_shift, |
|
) |
|
return t_emb |
|
|
|
|
|
class GaussianFourierProjection(nn.Module): |
|
"""Gaussian Fourier embeddings for noise levels.""" |
|
|
|
def __init__( |
|
self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False |
|
): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) |
|
self.log = log |
|
self.flip_sin_to_cos = flip_sin_to_cos |
|
|
|
if set_W_to_weight: |
|
|
|
self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) |
|
|
|
self.weight = self.W |
|
|
|
def forward(self, x): |
|
if self.log: |
|
x = torch.log(x) |
|
|
|
x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi |
|
|
|
if self.flip_sin_to_cos: |
|
out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1) |
|
else: |
|
out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) |
|
return out |
|
|
|
|
|
class SinusoidalPositionalEmbedding(nn.Module): |
|
"""Apply positional information to a sequence of embeddings. |
|
|
|
Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to |
|
them |
|
|
|
Args: |
|
embed_dim: (int): Dimension of the positional embedding. |
|
max_seq_length: Maximum sequence length to apply positional embeddings |
|
|
|
""" |
|
|
|
def __init__(self, embed_dim: int, max_seq_length: int = 32): |
|
super().__init__() |
|
position = torch.arange(max_seq_length).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim)) |
|
pe = torch.zeros(1, max_seq_length, embed_dim) |
|
pe[0, :, 0::2] = torch.sin(position * div_term) |
|
pe[0, :, 1::2] = torch.cos(position * div_term) |
|
self.register_buffer("pe", pe) |
|
|
|
def forward(self, x): |
|
_, seq_length, _ = x.shape |
|
x = x + self.pe[:, :seq_length] |
|
return x |
|
|
|
|
|
class ImagePositionalEmbeddings(nn.Module): |
|
""" |
|
Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the |
|
height and width of the latent space. |
|
|
|
For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092 |
|
|
|
For VQ-diffusion: |
|
|
|
Output vector embeddings are used as input for the transformer. |
|
|
|
Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE. |
|
|
|
Args: |
|
num_embed (`int`): |
|
Number of embeddings for the latent pixels embeddings. |
|
height (`int`): |
|
Height of the latent image i.e. the number of height embeddings. |
|
width (`int`): |
|
Width of the latent image i.e. the number of width embeddings. |
|
embed_dim (`int`): |
|
Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_embed: int, |
|
height: int, |
|
width: int, |
|
embed_dim: int, |
|
): |
|
super().__init__() |
|
|
|
self.height = height |
|
self.width = width |
|
self.num_embed = num_embed |
|
self.embed_dim = embed_dim |
|
|
|
self.emb = nn.Embedding(self.num_embed, embed_dim) |
|
self.height_emb = nn.Embedding(self.height, embed_dim) |
|
self.width_emb = nn.Embedding(self.width, embed_dim) |
|
|
|
def forward(self, index): |
|
emb = self.emb(index) |
|
|
|
height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height)) |
|
|
|
|
|
height_emb = height_emb.unsqueeze(2) |
|
|
|
width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width)) |
|
|
|
|
|
width_emb = width_emb.unsqueeze(1) |
|
|
|
pos_emb = height_emb + width_emb |
|
|
|
|
|
pos_emb = pos_emb.view(1, self.height * self.width, -1) |
|
|
|
emb = emb + pos_emb[:, : emb.shape[1], :] |
|
|
|
return emb |
|
|
|
|
|
class LabelEmbedding(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
|
|
Args: |
|
num_classes (`int`): The number of classes. |
|
hidden_size (`int`): The size of the vector embeddings. |
|
dropout_prob (`float`): The probability of dropping a label. |
|
""" |
|
|
|
def __init__(self, num_classes, hidden_size, dropout_prob): |
|
super().__init__() |
|
use_cfg_embedding = dropout_prob > 0 |
|
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) |
|
self.num_classes = num_classes |
|
self.dropout_prob = dropout_prob |
|
|
|
def token_drop(self, labels, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob |
|
else: |
|
drop_ids = torch.tensor(force_drop_ids == 1) |
|
labels = torch.where(drop_ids, self.num_classes, labels) |
|
return labels |
|
|
|
def forward(self, labels: torch.LongTensor, force_drop_ids=None): |
|
use_dropout = self.dropout_prob > 0 |
|
if (self.training and use_dropout) or (force_drop_ids is not None): |
|
labels = self.token_drop(labels, force_drop_ids) |
|
embeddings = self.embedding_table(labels) |
|
return embeddings |
|
|
|
|
|
class TextImageProjection(nn.Module): |
|
def __init__( |
|
self, |
|
text_embed_dim: int = 1024, |
|
image_embed_dim: int = 768, |
|
cross_attention_dim: int = 768, |
|
num_image_text_embeds: int = 10, |
|
): |
|
super().__init__() |
|
|
|
self.num_image_text_embeds = num_image_text_embeds |
|
self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim) |
|
self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim) |
|
|
|
def forward(self, text_embeds: torch.FloatTensor, image_embeds: torch.FloatTensor): |
|
batch_size = text_embeds.shape[0] |
|
|
|
|
|
image_text_embeds = self.image_embeds(image_embeds) |
|
image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1) |
|
|
|
|
|
text_embeds = self.text_proj(text_embeds) |
|
|
|
return torch.cat([image_text_embeds, text_embeds], dim=1) |
|
|
|
|
|
class ImageProjection(nn.Module): |
|
def __init__( |
|
self, |
|
image_embed_dim: int = 768, |
|
cross_attention_dim: int = 768, |
|
num_image_text_embeds: int = 32, |
|
): |
|
super().__init__() |
|
|
|
self.num_image_text_embeds = num_image_text_embeds |
|
self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim) |
|
self.norm = nn.LayerNorm(cross_attention_dim) |
|
|
|
def forward(self, image_embeds: torch.FloatTensor): |
|
batch_size = image_embeds.shape[0] |
|
|
|
|
|
image_embeds = self.image_embeds(image_embeds) |
|
image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1) |
|
image_embeds = self.norm(image_embeds) |
|
return image_embeds |
|
|
|
|
|
class IPAdapterFullImageProjection(nn.Module): |
|
def __init__(self, image_embed_dim=1024, cross_attention_dim=1024): |
|
super().__init__() |
|
from .attention import FeedForward |
|
|
|
self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu") |
|
self.norm = nn.LayerNorm(cross_attention_dim) |
|
|
|
def forward(self, image_embeds: torch.FloatTensor): |
|
return self.norm(self.ff(image_embeds)) |
|
|
|
|
|
class CombinedTimestepLabelEmbeddings(nn.Module): |
|
def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1): |
|
super().__init__() |
|
|
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1) |
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) |
|
self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob) |
|
|
|
def forward(self, timestep, class_labels, hidden_dtype=None): |
|
timesteps_proj = self.time_proj(timestep) |
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) |
|
|
|
class_labels = self.class_embedder(class_labels) |
|
|
|
conditioning = timesteps_emb + class_labels |
|
|
|
return conditioning |
|
|
|
|
|
class TextTimeEmbedding(nn.Module): |
|
def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64): |
|
super().__init__() |
|
self.norm1 = nn.LayerNorm(encoder_dim) |
|
self.pool = AttentionPooling(num_heads, encoder_dim) |
|
self.proj = nn.Linear(encoder_dim, time_embed_dim) |
|
self.norm2 = nn.LayerNorm(time_embed_dim) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.norm1(hidden_states) |
|
hidden_states = self.pool(hidden_states) |
|
hidden_states = self.proj(hidden_states) |
|
hidden_states = self.norm2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class TextImageTimeEmbedding(nn.Module): |
|
def __init__(self, text_embed_dim: int = 768, image_embed_dim: int = 768, time_embed_dim: int = 1536): |
|
super().__init__() |
|
self.text_proj = nn.Linear(text_embed_dim, time_embed_dim) |
|
self.text_norm = nn.LayerNorm(time_embed_dim) |
|
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim) |
|
|
|
def forward(self, text_embeds: torch.FloatTensor, image_embeds: torch.FloatTensor): |
|
|
|
time_text_embeds = self.text_proj(text_embeds) |
|
time_text_embeds = self.text_norm(time_text_embeds) |
|
|
|
|
|
time_image_embeds = self.image_proj(image_embeds) |
|
|
|
return time_image_embeds + time_text_embeds |
|
|
|
|
|
class ImageTimeEmbedding(nn.Module): |
|
def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536): |
|
super().__init__() |
|
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim) |
|
self.image_norm = nn.LayerNorm(time_embed_dim) |
|
|
|
def forward(self, image_embeds: torch.FloatTensor): |
|
|
|
time_image_embeds = self.image_proj(image_embeds) |
|
time_image_embeds = self.image_norm(time_image_embeds) |
|
return time_image_embeds |
|
|
|
|
|
class ImageHintTimeEmbedding(nn.Module): |
|
def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536): |
|
super().__init__() |
|
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim) |
|
self.image_norm = nn.LayerNorm(time_embed_dim) |
|
self.input_hint_block = nn.Sequential( |
|
nn.Conv2d(3, 16, 3, padding=1), |
|
nn.SiLU(), |
|
nn.Conv2d(16, 16, 3, padding=1), |
|
nn.SiLU(), |
|
nn.Conv2d(16, 32, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
nn.Conv2d(32, 32, 3, padding=1), |
|
nn.SiLU(), |
|
nn.Conv2d(32, 96, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
nn.Conv2d(96, 96, 3, padding=1), |
|
nn.SiLU(), |
|
nn.Conv2d(96, 256, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
nn.Conv2d(256, 4, 3, padding=1), |
|
) |
|
|
|
def forward(self, image_embeds: torch.FloatTensor, hint: torch.FloatTensor): |
|
|
|
time_image_embeds = self.image_proj(image_embeds) |
|
time_image_embeds = self.image_norm(time_image_embeds) |
|
hint = self.input_hint_block(hint) |
|
return time_image_embeds, hint |
|
|
|
|
|
class AttentionPooling(nn.Module): |
|
|
|
|
|
def __init__(self, num_heads, embed_dim, dtype=None): |
|
super().__init__() |
|
self.dtype = dtype |
|
self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim**0.5) |
|
self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype) |
|
self.num_heads = num_heads |
|
self.dim_per_head = embed_dim // self.num_heads |
|
|
|
def forward(self, x): |
|
bs, length, width = x.size() |
|
|
|
def shape(x): |
|
|
|
x = x.view(bs, -1, self.num_heads, self.dim_per_head) |
|
|
|
x = x.transpose(1, 2) |
|
|
|
x = x.reshape(bs * self.num_heads, -1, self.dim_per_head) |
|
|
|
x = x.transpose(1, 2) |
|
return x |
|
|
|
class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype) |
|
x = torch.cat([class_token, x], dim=1) |
|
|
|
|
|
q = shape(self.q_proj(class_token)) |
|
|
|
k = shape(self.k_proj(x)) |
|
v = shape(self.v_proj(x)) |
|
|
|
|
|
scale = 1 / math.sqrt(math.sqrt(self.dim_per_head)) |
|
weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) |
|
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
|
|
|
|
a = torch.einsum("bts,bcs->bct", weight, v) |
|
|
|
|
|
a = a.reshape(bs, -1, 1).transpose(1, 2) |
|
|
|
return a[:, 0, :] |
|
|
|
|
|
def get_fourier_embeds_from_boundingbox(embed_dim, box): |
|
""" |
|
Args: |
|
embed_dim: int |
|
box: a 3-D tensor [B x N x 4] representing the bounding boxes for GLIGEN pipeline |
|
Returns: |
|
[B x N x embed_dim] tensor of positional embeddings |
|
""" |
|
|
|
batch_size, num_boxes = box.shape[:2] |
|
|
|
emb = 100 ** (torch.arange(embed_dim) / embed_dim) |
|
emb = emb[None, None, None].to(device=box.device, dtype=box.dtype) |
|
emb = emb * box.unsqueeze(-1) |
|
|
|
emb = torch.stack((emb.sin(), emb.cos()), dim=-1) |
|
emb = emb.permute(0, 1, 3, 4, 2).reshape(batch_size, num_boxes, embed_dim * 2 * 4) |
|
|
|
return emb |
|
|
|
|
|
class GLIGENTextBoundingboxProjection(nn.Module): |
|
def __init__(self, positive_len, out_dim, feature_type="text-only", fourier_freqs=8): |
|
super().__init__() |
|
self.positive_len = positive_len |
|
self.out_dim = out_dim |
|
|
|
self.fourier_embedder_dim = fourier_freqs |
|
self.position_dim = fourier_freqs * 2 * 4 |
|
|
|
if isinstance(out_dim, tuple): |
|
out_dim = out_dim[0] |
|
|
|
if feature_type == "text-only": |
|
self.linears = nn.Sequential( |
|
nn.Linear(self.positive_len + self.position_dim, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, out_dim), |
|
) |
|
self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) |
|
|
|
elif feature_type == "text-image": |
|
self.linears_text = nn.Sequential( |
|
nn.Linear(self.positive_len + self.position_dim, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, out_dim), |
|
) |
|
self.linears_image = nn.Sequential( |
|
nn.Linear(self.positive_len + self.position_dim, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, out_dim), |
|
) |
|
self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) |
|
self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) |
|
|
|
self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) |
|
|
|
def forward( |
|
self, |
|
boxes, |
|
masks, |
|
positive_embeddings=None, |
|
phrases_masks=None, |
|
image_masks=None, |
|
phrases_embeddings=None, |
|
image_embeddings=None, |
|
): |
|
masks = masks.unsqueeze(-1) |
|
|
|
|
|
xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes) |
|
|
|
|
|
xyxy_null = self.null_position_feature.view(1, 1, -1) |
|
|
|
|
|
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null |
|
|
|
|
|
if positive_embeddings is not None: |
|
|
|
positive_null = self.null_positive_feature.view(1, 1, -1) |
|
|
|
|
|
positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null |
|
|
|
objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) |
|
|
|
|
|
else: |
|
phrases_masks = phrases_masks.unsqueeze(-1) |
|
image_masks = image_masks.unsqueeze(-1) |
|
|
|
|
|
text_null = self.null_text_feature.view(1, 1, -1) |
|
image_null = self.null_image_feature.view(1, 1, -1) |
|
|
|
|
|
phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null |
|
image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null |
|
|
|
objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1)) |
|
objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1)) |
|
objs = torch.cat([objs_text, objs_image], dim=1) |
|
|
|
return objs |
|
|
|
|
|
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module): |
|
""" |
|
For PixArt-Alpha. |
|
|
|
Reference: |
|
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29 |
|
""" |
|
|
|
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False): |
|
super().__init__() |
|
|
|
self.outdim = size_emb_dim |
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) |
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) |
|
|
|
self.use_additional_conditions = use_additional_conditions |
|
if use_additional_conditions: |
|
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) |
|
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) |
|
self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) |
|
|
|
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype): |
|
timesteps_proj = self.time_proj(timestep) |
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) |
|
|
|
if self.use_additional_conditions: |
|
resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype) |
|
resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1) |
|
aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype) |
|
aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1) |
|
conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1) |
|
else: |
|
conditioning = timesteps_emb |
|
|
|
return conditioning |
|
|
|
|
|
class PixArtAlphaTextProjection(nn.Module): |
|
""" |
|
Projects caption embeddings. Also handles dropout for classifier-free guidance. |
|
|
|
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py |
|
""" |
|
|
|
def __init__(self, in_features, hidden_size, num_tokens=120): |
|
super().__init__() |
|
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True) |
|
self.act_1 = nn.GELU(approximate="tanh") |
|
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True) |
|
|
|
def forward(self, caption): |
|
hidden_states = self.linear_1(caption) |
|
hidden_states = self.act_1(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class IPAdapterPlusImageProjection(nn.Module): |
|
"""Resampler of IP-Adapter Plus. |
|
|
|
Args: |
|
---- |
|
embed_dims (int): The feature dimension. Defaults to 768. |
|
output_dims (int): The number of output channels, that is the same |
|
number of the channels in the |
|
`unet.config.cross_attention_dim`. Defaults to 1024. |
|
hidden_dims (int): The number of hidden channels. Defaults to 1280. |
|
depth (int): The number of blocks. Defaults to 8. |
|
dim_head (int): The number of head channels. Defaults to 64. |
|
heads (int): Parallel attention heads. Defaults to 16. |
|
num_queries (int): The number of queries. Defaults to 8. |
|
ffn_ratio (float): The expansion ratio of feedforward network hidden |
|
layer channels. Defaults to 4. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dims: int = 768, |
|
output_dims: int = 1024, |
|
hidden_dims: int = 1280, |
|
depth: int = 4, |
|
dim_head: int = 64, |
|
heads: int = 16, |
|
num_queries: int = 8, |
|
ffn_ratio: float = 4, |
|
) -> None: |
|
super().__init__() |
|
from .attention import FeedForward |
|
|
|
self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5) |
|
|
|
self.proj_in = nn.Linear(embed_dims, hidden_dims) |
|
|
|
self.proj_out = nn.Linear(hidden_dims, output_dims) |
|
self.norm_out = nn.LayerNorm(output_dims) |
|
|
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append( |
|
nn.ModuleList( |
|
[ |
|
nn.LayerNorm(hidden_dims), |
|
nn.LayerNorm(hidden_dims), |
|
Attention( |
|
query_dim=hidden_dims, |
|
dim_head=dim_head, |
|
heads=heads, |
|
out_bias=False, |
|
), |
|
nn.Sequential( |
|
nn.LayerNorm(hidden_dims), |
|
FeedForward(hidden_dims, hidden_dims, activation_fn="gelu", mult=ffn_ratio, bias=False), |
|
), |
|
] |
|
) |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Forward pass. |
|
|
|
Args: |
|
---- |
|
x (torch.Tensor): Input Tensor. |
|
|
|
Returns: |
|
------- |
|
torch.Tensor: Output Tensor. |
|
""" |
|
latents = self.latents.repeat(x.size(0), 1, 1) |
|
|
|
x = self.proj_in(x) |
|
|
|
for ln0, ln1, attn, ff in self.layers: |
|
residual = latents |
|
|
|
encoder_hidden_states = ln0(x) |
|
latents = ln1(latents) |
|
encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2) |
|
latents = attn(latents, encoder_hidden_states) + residual |
|
latents = ff(latents) + latents |
|
|
|
latents = self.proj_out(latents) |
|
return self.norm_out(latents) |
|
|