|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import functools |
|
import math |
|
|
|
import flax.linen as nn |
|
import jax |
|
import jax.numpy as jnp |
|
|
|
|
|
def _query_chunk_attention(query, key, value, precision, key_chunk_size: int = 4096): |
|
"""Multi-head dot product attention with a limited number of queries.""" |
|
num_kv, num_heads, k_features = key.shape[-3:] |
|
v_features = value.shape[-1] |
|
key_chunk_size = min(key_chunk_size, num_kv) |
|
query = query / jnp.sqrt(k_features) |
|
|
|
@functools.partial(jax.checkpoint, prevent_cse=False) |
|
def summarize_chunk(query, key, value): |
|
attn_weights = jnp.einsum("...qhd,...khd->...qhk", query, key, precision=precision) |
|
|
|
max_score = jnp.max(attn_weights, axis=-1, keepdims=True) |
|
max_score = jax.lax.stop_gradient(max_score) |
|
exp_weights = jnp.exp(attn_weights - max_score) |
|
|
|
exp_values = jnp.einsum("...vhf,...qhv->...qhf", value, exp_weights, precision=precision) |
|
max_score = jnp.einsum("...qhk->...qh", max_score) |
|
|
|
return (exp_values, exp_weights.sum(axis=-1), max_score) |
|
|
|
def chunk_scanner(chunk_idx): |
|
|
|
key_chunk = jax.lax.dynamic_slice( |
|
operand=key, |
|
start_indices=[0] * (key.ndim - 3) + [chunk_idx, 0, 0], |
|
slice_sizes=list(key.shape[:-3]) + [key_chunk_size, num_heads, k_features], |
|
) |
|
|
|
|
|
value_chunk = jax.lax.dynamic_slice( |
|
operand=value, |
|
start_indices=[0] * (value.ndim - 3) + [chunk_idx, 0, 0], |
|
slice_sizes=list(value.shape[:-3]) + [key_chunk_size, num_heads, v_features], |
|
) |
|
|
|
return summarize_chunk(query, key_chunk, value_chunk) |
|
|
|
chunk_values, chunk_weights, chunk_max = jax.lax.map(f=chunk_scanner, xs=jnp.arange(0, num_kv, key_chunk_size)) |
|
|
|
global_max = jnp.max(chunk_max, axis=0, keepdims=True) |
|
max_diffs = jnp.exp(chunk_max - global_max) |
|
|
|
chunk_values *= jnp.expand_dims(max_diffs, axis=-1) |
|
chunk_weights *= max_diffs |
|
|
|
all_values = chunk_values.sum(axis=0) |
|
all_weights = jnp.expand_dims(chunk_weights, -1).sum(axis=0) |
|
|
|
return all_values / all_weights |
|
|
|
|
|
def jax_memory_efficient_attention( |
|
query, key, value, precision=jax.lax.Precision.HIGHEST, query_chunk_size: int = 1024, key_chunk_size: int = 4096 |
|
): |
|
r""" |
|
Flax Memory-efficient multi-head dot product attention. https://arxiv.org/abs/2112.05682v2 |
|
https://github.com/AminRezaei0x443/memory-efficient-attention |
|
|
|
Args: |
|
query (`jnp.ndarray`): (batch..., query_length, head, query_key_depth_per_head) |
|
key (`jnp.ndarray`): (batch..., key_value_length, head, query_key_depth_per_head) |
|
value (`jnp.ndarray`): (batch..., key_value_length, head, value_depth_per_head) |
|
precision (`jax.lax.Precision`, *optional*, defaults to `jax.lax.Precision.HIGHEST`): |
|
numerical precision for computation |
|
query_chunk_size (`int`, *optional*, defaults to 1024): |
|
chunk size to divide query array value must divide query_length equally without remainder |
|
key_chunk_size (`int`, *optional*, defaults to 4096): |
|
chunk size to divide key and value array value must divide key_value_length equally without remainder |
|
|
|
Returns: |
|
(`jnp.ndarray`) with shape of (batch..., query_length, head, value_depth_per_head) |
|
""" |
|
num_q, num_heads, q_features = query.shape[-3:] |
|
|
|
def chunk_scanner(chunk_idx, _): |
|
|
|
query_chunk = jax.lax.dynamic_slice( |
|
operand=query, |
|
start_indices=([0] * (query.ndim - 3)) + [chunk_idx, 0, 0], |
|
slice_sizes=list(query.shape[:-3]) + [min(query_chunk_size, num_q), num_heads, q_features], |
|
) |
|
|
|
return ( |
|
chunk_idx + query_chunk_size, |
|
_query_chunk_attention( |
|
query=query_chunk, key=key, value=value, precision=precision, key_chunk_size=key_chunk_size |
|
), |
|
) |
|
|
|
_, res = jax.lax.scan( |
|
f=chunk_scanner, |
|
init=0, |
|
xs=None, |
|
length=math.ceil(num_q / query_chunk_size), |
|
) |
|
|
|
return jnp.concatenate(res, axis=-3) |
|
|
|
|
|
class FlaxAttention(nn.Module): |
|
r""" |
|
A Flax multi-head attention module as described in: https://arxiv.org/abs/1706.03762 |
|
|
|
Parameters: |
|
query_dim (:obj:`int`): |
|
Input hidden states dimension |
|
heads (:obj:`int`, *optional*, defaults to 8): |
|
Number of heads |
|
dim_head (:obj:`int`, *optional*, defaults to 64): |
|
Hidden states dimension inside each head |
|
dropout (:obj:`float`, *optional*, defaults to 0.0): |
|
Dropout rate |
|
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): |
|
enable memory efficient attention https://arxiv.org/abs/2112.05682 |
|
split_head_dim (`bool`, *optional*, defaults to `False`): |
|
Whether to split the head dimension into a new axis for the self-attention computation. In most cases, |
|
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. |
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): |
|
Parameters `dtype` |
|
|
|
""" |
|
|
|
query_dim: int |
|
heads: int = 8 |
|
dim_head: int = 64 |
|
dropout: float = 0.0 |
|
use_memory_efficient_attention: bool = False |
|
split_head_dim: bool = False |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
inner_dim = self.dim_head * self.heads |
|
self.scale = self.dim_head**-0.5 |
|
|
|
|
|
self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_q") |
|
self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_k") |
|
self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_v") |
|
|
|
self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name="to_out_0") |
|
self.dropout_layer = nn.Dropout(rate=self.dropout) |
|
|
|
def reshape_heads_to_batch_dim(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = jnp.transpose(tensor, (0, 2, 1, 3)) |
|
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) |
|
return tensor |
|
|
|
def reshape_batch_dim_to_heads(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = jnp.transpose(tensor, (0, 2, 1, 3)) |
|
tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def __call__(self, hidden_states, context=None, deterministic=True): |
|
context = hidden_states if context is None else context |
|
|
|
query_proj = self.query(hidden_states) |
|
key_proj = self.key(context) |
|
value_proj = self.value(context) |
|
|
|
if self.split_head_dim: |
|
b = hidden_states.shape[0] |
|
query_states = jnp.reshape(query_proj, (b, -1, self.heads, self.dim_head)) |
|
key_states = jnp.reshape(key_proj, (b, -1, self.heads, self.dim_head)) |
|
value_states = jnp.reshape(value_proj, (b, -1, self.heads, self.dim_head)) |
|
else: |
|
query_states = self.reshape_heads_to_batch_dim(query_proj) |
|
key_states = self.reshape_heads_to_batch_dim(key_proj) |
|
value_states = self.reshape_heads_to_batch_dim(value_proj) |
|
|
|
if self.use_memory_efficient_attention: |
|
query_states = query_states.transpose(1, 0, 2) |
|
key_states = key_states.transpose(1, 0, 2) |
|
value_states = value_states.transpose(1, 0, 2) |
|
|
|
|
|
|
|
|
|
flatten_latent_dim = query_states.shape[-3] |
|
if flatten_latent_dim % 64 == 0: |
|
query_chunk_size = int(flatten_latent_dim / 64) |
|
elif flatten_latent_dim % 16 == 0: |
|
query_chunk_size = int(flatten_latent_dim / 16) |
|
elif flatten_latent_dim % 4 == 0: |
|
query_chunk_size = int(flatten_latent_dim / 4) |
|
else: |
|
query_chunk_size = int(flatten_latent_dim) |
|
|
|
hidden_states = jax_memory_efficient_attention( |
|
query_states, key_states, value_states, query_chunk_size=query_chunk_size, key_chunk_size=4096 * 4 |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 0, 2) |
|
else: |
|
|
|
if self.split_head_dim: |
|
attention_scores = jnp.einsum("b t n h, b f n h -> b n f t", key_states, query_states) |
|
else: |
|
attention_scores = jnp.einsum("b i d, b j d->b i j", query_states, key_states) |
|
|
|
attention_scores = attention_scores * self.scale |
|
attention_probs = nn.softmax(attention_scores, axis=-1 if self.split_head_dim else 2) |
|
|
|
|
|
if self.split_head_dim: |
|
hidden_states = jnp.einsum("b n f t, b t n h -> b f n h", attention_probs, value_states) |
|
b = hidden_states.shape[0] |
|
hidden_states = jnp.reshape(hidden_states, (b, -1, self.heads * self.dim_head)) |
|
else: |
|
hidden_states = jnp.einsum("b i j, b j d -> b i d", attention_probs, value_states) |
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
|
|
hidden_states = self.proj_attn(hidden_states) |
|
return self.dropout_layer(hidden_states, deterministic=deterministic) |
|
|
|
|
|
class FlaxBasicTransformerBlock(nn.Module): |
|
r""" |
|
A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in: |
|
https://arxiv.org/abs/1706.03762 |
|
|
|
|
|
Parameters: |
|
dim (:obj:`int`): |
|
Inner hidden states dimension |
|
n_heads (:obj:`int`): |
|
Number of heads |
|
d_head (:obj:`int`): |
|
Hidden states dimension inside each head |
|
dropout (:obj:`float`, *optional*, defaults to 0.0): |
|
Dropout rate |
|
only_cross_attention (`bool`, defaults to `False`): |
|
Whether to only apply cross attention. |
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): |
|
Parameters `dtype` |
|
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): |
|
enable memory efficient attention https://arxiv.org/abs/2112.05682 |
|
split_head_dim (`bool`, *optional*, defaults to `False`): |
|
Whether to split the head dimension into a new axis for the self-attention computation. In most cases, |
|
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. |
|
""" |
|
|
|
dim: int |
|
n_heads: int |
|
d_head: int |
|
dropout: float = 0.0 |
|
only_cross_attention: bool = False |
|
dtype: jnp.dtype = jnp.float32 |
|
use_memory_efficient_attention: bool = False |
|
split_head_dim: bool = False |
|
|
|
def setup(self): |
|
|
|
self.attn1 = FlaxAttention( |
|
self.dim, |
|
self.n_heads, |
|
self.d_head, |
|
self.dropout, |
|
self.use_memory_efficient_attention, |
|
self.split_head_dim, |
|
dtype=self.dtype, |
|
) |
|
|
|
self.attn2 = FlaxAttention( |
|
self.dim, |
|
self.n_heads, |
|
self.d_head, |
|
self.dropout, |
|
self.use_memory_efficient_attention, |
|
self.split_head_dim, |
|
dtype=self.dtype, |
|
) |
|
self.ff = FlaxFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype) |
|
self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) |
|
self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) |
|
self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) |
|
self.dropout_layer = nn.Dropout(rate=self.dropout) |
|
|
|
def __call__(self, hidden_states, context, deterministic=True): |
|
|
|
residual = hidden_states |
|
if self.only_cross_attention: |
|
hidden_states = self.attn1(self.norm1(hidden_states), context, deterministic=deterministic) |
|
else: |
|
hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic) |
|
hidden_states = hidden_states + residual |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic) |
|
hidden_states = hidden_states + residual |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic) |
|
hidden_states = hidden_states + residual |
|
|
|
return self.dropout_layer(hidden_states, deterministic=deterministic) |
|
|
|
|
|
class FlaxTransformer2DModel(nn.Module): |
|
r""" |
|
A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in: |
|
https://arxiv.org/pdf/1506.02025.pdf |
|
|
|
|
|
Parameters: |
|
in_channels (:obj:`int`): |
|
Input number of channels |
|
n_heads (:obj:`int`): |
|
Number of heads |
|
d_head (:obj:`int`): |
|
Hidden states dimension inside each head |
|
depth (:obj:`int`, *optional*, defaults to 1): |
|
Number of transformers block |
|
dropout (:obj:`float`, *optional*, defaults to 0.0): |
|
Dropout rate |
|
use_linear_projection (`bool`, defaults to `False`): tbd |
|
only_cross_attention (`bool`, defaults to `False`): tbd |
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): |
|
Parameters `dtype` |
|
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): |
|
enable memory efficient attention https://arxiv.org/abs/2112.05682 |
|
split_head_dim (`bool`, *optional*, defaults to `False`): |
|
Whether to split the head dimension into a new axis for the self-attention computation. In most cases, |
|
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. |
|
""" |
|
|
|
in_channels: int |
|
n_heads: int |
|
d_head: int |
|
depth: int = 1 |
|
dropout: float = 0.0 |
|
use_linear_projection: bool = False |
|
only_cross_attention: bool = False |
|
dtype: jnp.dtype = jnp.float32 |
|
use_memory_efficient_attention: bool = False |
|
split_head_dim: bool = False |
|
|
|
def setup(self): |
|
self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5) |
|
|
|
inner_dim = self.n_heads * self.d_head |
|
if self.use_linear_projection: |
|
self.proj_in = nn.Dense(inner_dim, dtype=self.dtype) |
|
else: |
|
self.proj_in = nn.Conv( |
|
inner_dim, |
|
kernel_size=(1, 1), |
|
strides=(1, 1), |
|
padding="VALID", |
|
dtype=self.dtype, |
|
) |
|
|
|
self.transformer_blocks = [ |
|
FlaxBasicTransformerBlock( |
|
inner_dim, |
|
self.n_heads, |
|
self.d_head, |
|
dropout=self.dropout, |
|
only_cross_attention=self.only_cross_attention, |
|
dtype=self.dtype, |
|
use_memory_efficient_attention=self.use_memory_efficient_attention, |
|
split_head_dim=self.split_head_dim, |
|
) |
|
for _ in range(self.depth) |
|
] |
|
|
|
if self.use_linear_projection: |
|
self.proj_out = nn.Dense(inner_dim, dtype=self.dtype) |
|
else: |
|
self.proj_out = nn.Conv( |
|
inner_dim, |
|
kernel_size=(1, 1), |
|
strides=(1, 1), |
|
padding="VALID", |
|
dtype=self.dtype, |
|
) |
|
|
|
self.dropout_layer = nn.Dropout(rate=self.dropout) |
|
|
|
def __call__(self, hidden_states, context, deterministic=True): |
|
batch, height, width, channels = hidden_states.shape |
|
residual = hidden_states |
|
hidden_states = self.norm(hidden_states) |
|
if self.use_linear_projection: |
|
hidden_states = hidden_states.reshape(batch, height * width, channels) |
|
hidden_states = self.proj_in(hidden_states) |
|
else: |
|
hidden_states = self.proj_in(hidden_states) |
|
hidden_states = hidden_states.reshape(batch, height * width, channels) |
|
|
|
for transformer_block in self.transformer_blocks: |
|
hidden_states = transformer_block(hidden_states, context, deterministic=deterministic) |
|
|
|
if self.use_linear_projection: |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.reshape(batch, height, width, channels) |
|
else: |
|
hidden_states = hidden_states.reshape(batch, height, width, channels) |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
hidden_states = hidden_states + residual |
|
return self.dropout_layer(hidden_states, deterministic=deterministic) |
|
|
|
|
|
class FlaxFeedForward(nn.Module): |
|
r""" |
|
Flax module that encapsulates two Linear layers separated by a non-linearity. It is the counterpart of PyTorch's |
|
[`FeedForward`] class, with the following simplifications: |
|
- The activation function is currently hardcoded to a gated linear unit from: |
|
https://arxiv.org/abs/2002.05202 |
|
- `dim_out` is equal to `dim`. |
|
- The number of hidden dimensions is hardcoded to `dim * 4` in [`FlaxGELU`]. |
|
|
|
Parameters: |
|
dim (:obj:`int`): |
|
Inner hidden states dimension |
|
dropout (:obj:`float`, *optional*, defaults to 0.0): |
|
Dropout rate |
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): |
|
Parameters `dtype` |
|
""" |
|
|
|
dim: int |
|
dropout: float = 0.0 |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
|
|
|
|
self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype) |
|
self.net_2 = nn.Dense(self.dim, dtype=self.dtype) |
|
|
|
def __call__(self, hidden_states, deterministic=True): |
|
hidden_states = self.net_0(hidden_states, deterministic=deterministic) |
|
hidden_states = self.net_2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class FlaxGEGLU(nn.Module): |
|
r""" |
|
Flax implementation of a Linear layer followed by the variant of the gated linear unit activation function from |
|
https://arxiv.org/abs/2002.05202. |
|
|
|
Parameters: |
|
dim (:obj:`int`): |
|
Input hidden states dimension |
|
dropout (:obj:`float`, *optional*, defaults to 0.0): |
|
Dropout rate |
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): |
|
Parameters `dtype` |
|
""" |
|
|
|
dim: int |
|
dropout: float = 0.0 |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self): |
|
inner_dim = self.dim * 4 |
|
self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype) |
|
self.dropout_layer = nn.Dropout(rate=self.dropout) |
|
|
|
def __call__(self, hidden_states, deterministic=True): |
|
hidden_states = self.proj(hidden_states) |
|
hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis=2) |
|
return self.dropout_layer(hidden_linear * nn.gelu(hidden_gelu), deterministic=deterministic) |
|
|