File size: 8,778 Bytes
e8aa256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# -*- coding:utf-8 -*-
import os
import sys
import shutil
import logging
import colorlog
from tqdm import tqdm
import time
import yaml
import random
import importlib
from PIL import Image
from warnings import simplefilter
import imageio
import math
import collections
import json
import numpy as np
import torch
import torch.nn as nn
from torch.optim import Adam
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.data import DataLoader, Dataset
from einops import rearrange, repeat
import torch.distributed as dist
from torchvision import datasets, transforms, utils

logging.getLogger().setLevel(logging.WARNING)
simplefilter(action='ignore', category=FutureWarning)

def get_logger(filename=None):
    """
    examples:
        logger = get_logger('try_logging.txt')

        logger.debug("Do something.")
        logger.info("Start print log.")
        logger.warning("Something maybe fail.")
        try:
            raise ValueError()
        except ValueError:
            logger.error("Error", exc_info=True)

        tips:
        DO NOT logger.inf(some big tensors since color may not helpful.)
    """
    logger = logging.getLogger('utils')
    level = logging.DEBUG
    logger.setLevel(level=level)
    # Use propagate to avoid multiple loggings.
    logger.propagate = False
    # Remove %(levelname)s since we have colorlog to represent levelname.
    format_str = '[%(asctime)s <%(filename)s:%(lineno)d> %(funcName)s] %(message)s'

    streamHandler = logging.StreamHandler()
    streamHandler.setLevel(level)
    coloredFormatter = colorlog.ColoredFormatter(
        '%(log_color)s' + format_str,
        datefmt='%Y-%m-%d %H:%M:%S',
        reset=True,
        log_colors={
            'DEBUG': 'cyan',
            # 'INFO': 'white',
            'WARNING': 'yellow',
            'ERROR': 'red',
            'CRITICAL': 'reg,bg_white',
        }
    )

    streamHandler.setFormatter(coloredFormatter)
    logger.addHandler(streamHandler)

    if filename:
        fileHandler = logging.FileHandler(filename)
        fileHandler.setLevel(level)
        formatter = logging.Formatter(format_str)
        fileHandler.setFormatter(formatter)
        logger.addHandler(fileHandler)

    # Fix multiple logging for torch.distributed
    try:
        class UniqueLogger:
            def __init__(self, logger):
                self.logger = logger
                self.local_rank = torch.distributed.get_rank()

            def info(self, msg, *args, **kwargs):
                if self.local_rank == 0:
                    return self.logger.info(msg, *args, **kwargs)

            def warning(self, msg, *args, **kwargs):
                if self.local_rank == 0:
                    return self.logger.warning(msg, *args, **kwargs)

        logger = UniqueLogger(logger)
    # AssertionError for gpu with no distributed
    # AttributeError for no gpu.
    except Exception:
        pass
    return logger


logger = get_logger()

def split_filename(filename):
    absname = os.path.abspath(filename)
    dirname, basename = os.path.split(absname)
    split_tmp = basename.rsplit('.', maxsplit=1)
    if len(split_tmp) == 2:
        rootname, extname = split_tmp
    elif len(split_tmp) == 1:
        rootname = split_tmp[0]
        extname = None
    else:
        raise ValueError("programming error!")
    return dirname, rootname, extname

def data2file(data, filename, type=None, override=False, printable=False, **kwargs):
    dirname, rootname, extname = split_filename(filename)
    print_did_not_save_flag = True
    if type:
        extname = type
    if not os.path.exists(dirname):
        os.makedirs(dirname, exist_ok=True)

    if not os.path.exists(filename) or override:
        if extname in ['jpg', 'png', 'jpeg']:
            utils.save_image(data, filename, **kwargs)
        elif extname == 'gif':
            imageio.mimsave(filename, data, format='GIF', duration=kwargs.get('duration'), loop=0)
        elif extname == 'txt':
            if kwargs is None:
                kwargs = {}
            max_step = kwargs.get('max_step')
            if max_step is None:
                max_step = np.Infinity

            with open(filename, 'w', encoding='utf-8') as f:
                for i, e in enumerate(data):
                    if i < max_step:
                        f.write(str(e) + '\n')
                    else:
                        break
        else:
            raise ValueError('Do not support this type')
        if printable: logger.info('Saved data to %s' % os.path.abspath(filename))
    else:
        if print_did_not_save_flag: logger.info(
            'Did not save data to %s because file exists and override is False' % os.path.abspath(
                filename))


def file2data(filename, type=None, printable=True, **kwargs):
    dirname, rootname, extname = split_filename(filename)
    print_load_flag = True
    if type:
        extname = type
    
    if extname in ['pth', 'ckpt']:
        data = torch.load(filename, map_location=kwargs.get('map_location'))
    elif extname == 'txt':
        top = kwargs.get('top', None)
        with open(filename, encoding='utf-8') as f:
            if top:
                data = [f.readline() for _ in range(top)]
            else:
                data = [e for e in f.read().split('\n') if e]
    elif extname == 'yaml':
        with open(filename, 'r') as f:
            data = yaml.load(f)
    else:
        raise ValueError('type can only support h5, npy, json, txt')
    if printable:
        if print_load_flag:
            logger.info('Loaded data from %s' % os.path.abspath(filename))
    return data


def ensure_dirname(dirname, override=False):
    if os.path.exists(dirname) and override:
        logger.info('Removing dirname: %s' % os.path.abspath(dirname))
        try:
            shutil.rmtree(dirname)
        except OSError as e:
            raise ValueError('Failed to delete %s because %s' % (dirname, e))

    if not os.path.exists(dirname):
        logger.info('Making dirname: %s' % os.path.abspath(dirname))
        os.makedirs(dirname, exist_ok=True)


def import_filename(filename):
    spec = importlib.util.spec_from_file_location("mymodule", filename)
    module = importlib.util.module_from_spec(spec)
    sys.modules[spec.name] = module
    spec.loader.exec_module(module)
    return module


def adaptively_load_state_dict(target, state_dict):
    target_dict = target.state_dict()

    try:
        common_dict = {k: v for k, v in state_dict.items() if k in target_dict and v.size() == target_dict[k].size()}
    except Exception as e:
        logger.warning('load error %s', e)
        common_dict = {k: v for k, v in state_dict.items() if k in target_dict}

    if 'param_groups' in common_dict and common_dict['param_groups'][0]['params'] != \
            target.state_dict()['param_groups'][0]['params']:
        logger.warning('Detected mismatch params, auto adapte state_dict to current')
        common_dict['param_groups'][0]['params'] = target.state_dict()['param_groups'][0]['params']
    target_dict.update(common_dict)
    target.load_state_dict(target_dict)

    missing_keys = [k for k in target_dict.keys() if k not in common_dict]
    unexpected_keys = [k for k in state_dict.keys() if k not in common_dict]

    if len(unexpected_keys) != 0:
        logger.warning(
            f"Some weights of state_dict were not used in target: {unexpected_keys}"
        )
    if len(missing_keys) != 0:
        logger.warning(
            f"Some weights of state_dict are missing used in target {missing_keys}"
        )
    if len(unexpected_keys) == 0 and len(missing_keys) == 0:
        logger.warning("Strictly Loaded state_dict.")

def set_seed(seed=42):
    random.seed(seed)
    os.environ['PYHTONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True

def image2pil(filename):
    return Image.open(filename)


def image2arr(filename):
    pil = image2pil(filename)
    return pil2arr(pil)


# 格式转换
def pil2arr(pil):
    if isinstance(pil, list):
        arr = np.array(
            [np.array(e.convert('RGB').getdata(), dtype=np.uint8).reshape(e.size[1], e.size[0], 3) for e in pil])
    else:
        arr = np.array(pil)
    return arr


def arr2pil(arr):
    if arr.ndim == 3:
        return Image.fromarray(arr.astype('uint8'), 'RGB')
    elif arr.ndim == 4:
        return [Image.fromarray(e.astype('uint8'), 'RGB') for e in list(arr)]
    else:
        raise ValueError('arr must has ndim of 3 or 4, but got %s' % arr.ndim)

def notebook_show(*images):
    from IPython.display import Image
    from IPython.display import display
    display(*[Image(e) for e in images])