File size: 10,801 Bytes
e8aa256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os, io, csv, math, random
import numpy as np
from einops import rearrange

import torch
from decord import VideoReader
import cv2
from scipy.ndimage import distance_transform_edt
import torchvision.transforms as transforms
from torch.utils.data.dataset import Dataset
# from utils.util import zero_rank_print
#from torchvision.io import read_image
from PIL import Image
def pil_image_to_numpy(image, is_maks = False, index = 1):
    """Convert a PIL image to a NumPy array."""
    
    if is_maks:
#         index = 1
        image = image.resize((256, 256))
#         image = (np.array(image)==index)*1
#         image = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_GRAY2RGB)
        return np.array(image)
    else:
        if image.mode != 'RGB':
            image = image.convert('RGB')
        image = image.resize((256, 256))
        return np.array(image)

def numpy_to_pt(images: np.ndarray, is_mask=False) -> torch.FloatTensor:
    """Convert a NumPy image to a PyTorch tensor."""
    if images.ndim == 3:
        images = images[..., None]
    images = torch.from_numpy(images.transpose(0, 3, 1, 2))
    if is_mask:
        return images.float() 
    else:
        return images.float() / 255


class WebVid10M(Dataset):
    def __init__(
            self,video_folder,ann_folder,motion_folder,
            sample_size=256, sample_stride=4, sample_n_frames=14,
        ):

        self.dataset = [i for i in os.listdir(video_folder)]
#         self.dataset = ["cce03c2a9b"]    
        self.length = len(self.dataset)
        print(f"data scale: {self.length}")
        random.shuffle(self.dataset)    
        self.video_folder    = video_folder
        self.sample_stride   = sample_stride
        self.sample_n_frames = sample_n_frames
        self.ann_folder = ann_folder
        self.heatmap = self.gen_gaussian_heatmap()
        self.motion_values_folder=motion_folder
        self.sample_size = sample_size
        print("length",len(self.dataset))
        sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
        
        print("sample size",sample_size)
        self.pixel_transforms = transforms.Compose([
#             transforms.RandomHorizontalFlip(),
            transforms.Resize(sample_size),
#             transforms.CenterCrop(sample_size),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
        ])
    
    
    
    def center_crop(self,img):
        h, w = img.shape[-2:]  # Assuming img shape is [C, H, W] or [B, C, H, W]
        min_dim = min(h, w)
        top = (h - min_dim) // 2
        left = (w - min_dim) // 2
        return img[..., top:top+min_dim, left:left+min_dim]
        
    def gen_gaussian_heatmap(self,imgSize=200):
        circle_img = np.zeros((imgSize, imgSize), np.float32)
        circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)
#         print(circle_mask)

        isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)

        # 生成高斯图
        for i in range(imgSize):
            for j in range(imgSize):
                isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp(
                    -1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2)))

        # 如果要可视化对比正方形和最大内切圆高斯图的区别,注释下面这行即可
        isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
        isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
        isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)
        # 将图像调整大小为 50x50
#         isotropicGrayscaleImage = cv2.resize(isotropicGrayscaleImage, (40, 40))
        return isotropicGrayscaleImage
    
    def calculate_center_coordinates(self,masks,ids, side=20):
        center_coordinates = []
        ids = random.choice(ids[1:])
        for index_mask, mask in enumerate(masks):
            new_img = np.zeros((self.sample_size, self.sample_size), np.float32)
            
            # 计算坐标的平均值,即中心坐标
#             non_zero_coordinates = np.column_stack(np.where(mask_array > 0))
#             center_coordinate = np.mean(non_zero_coordinates, axis=0)[:2].astype(np.uint8)
#             print(ids)
            
            for index in [ids]:
                mask_array = (np.array(mask)==index)*1
            
                # 找到最大距离的索引
                distance_transform = distance_transform_edt(mask_array)
                center_coordinate = np.unravel_index(np.argmax(distance_transform), distance_transform.shape)

                y1 = max(center_coordinate[0]-side,0)
                y2 = min(center_coordinate[0]+side,self.sample_size-1)
                x1 = max(center_coordinate[1]-side,0)
                x2 = min(center_coordinate[1]+side,self.sample_size-1)
                need_map = cv2.resize(self.heatmap, (x2-x1, y2-y1))
                new_img[y1:y2,x1:x2] = need_map
                if index_mask == 0:
                    new_img = mask_array*255
            new_img = cv2.cvtColor(new_img.astype(np.uint8), cv2.COLOR_GRAY2RGB)
            
            center_coordinates.append(new_img)
        return center_coordinates

    def get_batch(self, idx):
        def sort_frames(frame_name):
            return int(frame_name.split('.')[0])
  
        while True:
            videoid = self.dataset[idx]
#             videoid = video_dict['videoid']
    
            preprocessed_dir = os.path.join(self.video_folder, videoid)
            ann_folder = os.path.join(self.ann_folder, videoid)
            motion_values_file = os.path.join(self.motion_values_folder, videoid, videoid + "_average_motion.txt")
    
            if not os.path.exists(ann_folder):
                idx = random.randint(0, len(self.dataset) - 1)
                continue
    
            # Sort and limit the number of image and depth files to 14
            image_files = sorted(os.listdir(preprocessed_dir), key=sort_frames)[:14]
            depth_files = sorted(os.listdir(ann_folder), key=sort_frames)[:14]
            
            # Check if there are enough frames for both image and depth
#             if len(image_files) < 14 or len(depth_files) < 14:
#                 idx = random.randint(0, len(self.dataset) - 1)
#                 continue
    
            # Load image frames
            numpy_images = np.array([pil_image_to_numpy(Image.open(os.path.join(preprocessed_dir, img))) for img in image_files])
            pixel_values = numpy_to_pt(numpy_images)
    
            # Load depth frames
            mask = Image.open(os.path.join(ann_folder, depth_files[0])).convert('P')
            ids = [i for i in np.unique(mask)]
#             print(ids)
            if len(ids)==1:
                idx = random.randint(0, len(self.dataset) - 1)
                continue
#             ids = random.choice(ids[1:])
            numpy_depth_images = np.array([pil_image_to_numpy(Image.open(os.path.join(ann_folder, df)).convert('P'),True,ids) for df in depth_files])
            
            heatmap_pixel_values = np.array(self.calculate_center_coordinates(numpy_depth_images,ids))
#             center_coordinates = self.coordinates_normalize(center_coordinates)
            mask_pixel_values = numpy_to_pt(numpy_depth_images,True)
            heatmap_pixel_values = numpy_to_pt(heatmap_pixel_values,True)
            
            
            # Load motion values
            motion_values = 180
#             with open(motion_values_file, 'r') as file:
#                 motion_values = float(file.read().strip())
    
            return pixel_values, mask_pixel_values, motion_values, heatmap_pixel_values

        
        
    
    def __len__(self):
        return self.length
    
    def coordinates_normalize(self,center_coordinates):
        first_point = center_coordinates[0]
        center_coordinates = [one-first_point for one in center_coordinates]
        
        return center_coordinates
    
    def normalize(self, images):
        """
        Normalize an image array to [-1,1].
        """
        return 2.0 * images - 1.0
    
    def __getitem__(self, idx):
        
        #while True:
           # try:
        pixel_values, depth_pixel_values,motion_values,heatmap_pixel_values = self.get_batch(idx)
           #     break
          #  except Exception as e:
          #      print(e)
          #      idx = random.randint(0, self.length - 1)
#         print()
        pixel_values = self.normalize(pixel_values)
    
        sample = dict(pixel_values=pixel_values, depth_pixel_values=depth_pixel_values,
                      motion_values=motion_values,heatmap_pixel_values=heatmap_pixel_values)
        return sample




if __name__ == "__main__":
    from util import save_videos_grid

    dataset = WebVid10M(
        video_folder = "/mmu-ocr/weijiawu/MovieDiffusion/svd-temporal-controlnet/data/ref-youtube-vos/train/JPEGImages",
        ann_folder = "/mmu-ocr/weijiawu/MovieDiffusion/svd-temporal-controlnet/data/ref-youtube-vos/train/Annotations",
        motion_folder = "",
        sample_size=256,
        sample_stride=1, sample_n_frames=16
    )
#     import pdb
#     pdb.set_trace()
    
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=16,)
    for idx, batch in enumerate(dataloader):
        images = ((batch["pixel_values"][0].permute(0,2,3,1)+1)/2)*255
        masks = batch["depth_pixel_values"][0].permute(0,2,3,1)*255
        heatmaps = batch["heatmap_pixel_values"][0].permute(0,2,3,1)
#         center_coordinates = batch["center_coordinates"]
        
        print(batch["pixel_values"].shape)

        for i in range(images.shape[0]):
            image = images[i].numpy().astype(np.uint8)
            mask = masks[i].numpy()
            heatmap = heatmaps[i].numpy()
#             center_coordinate = center_coordinates[i][0][:2].numpy().astype(np.uint8)
            
#             print(mask.shape)
#             print(center_coordinate)
#             mask[center_coordinate[0]:center_coordinate[0]+10,center_coordinate[1]:center_coordinate[1]+10]=125 
            
            print(np.unique(mask))
            cv2.imwrite("./vis/image_{}.jpg".format(i), image) 
            cv2.imwrite("./vis/mask_{}.jpg".format(i), mask.astype(np.uint8)) 
            cv2.imwrite("./vis/heatmap_{}.jpg".format(i), heatmap.astype(np.uint8)) 
            cv2.imwrite("./vis/{}.jpg".format(i), heatmap.astype(np.uint8)*0.5+image*0.5) 
#             save_videos_grid(batch["pixel_values"][i:i+1].permute(0,2,1,3,4), os.path.join(".", f"{idx}-{i}.mp4"), rescale=True)
        break