import gradio as gr import numpy as np import torch from datasets import load_dataset from deep_translator import GoogleTranslator from transformers import ( AutoTokenizer, SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, VitsModel, pipeline, ) # device = "cuda:0" if torch.cuda.is_available() else "cpu" device = "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) # load text-to-speech mms-tts-id model (speaker embeddings included) model = VitsModel.from_pretrained("facebook/mms-tts-ind") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ind") def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) return outputs["text"] def synthesise(text): inputs = tokenizer(text=text, return_tensors="pt") with torch.no_grad(): speech = model(**inputs).waveform return speech.reshape(-1, 1).cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) google_translated = GoogleTranslator( source="en", target="id").translate(translated_text) synthesised_speech = synthesise(google_translated) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Indonesian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech transcription, [Deep Translator](https://github.com/nidhaloff/deep-translator) for translation, and Meta's [MMS TTS IND](https://huggingface.co/facebook/mms-tts-ind) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()