File size: 21,271 Bytes
03a856a
 
 
 
 
1ba48ad
03a856a
7f52dfe
 
b0762c4
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0616d16
 
894e005
 
 
 
 
e9c3b34
0616d16
 
 
 
 
 
529fb74
 
 
 
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1f181e
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
894e005
65882a7
 
03a856a
1932d9e
 
03a856a
 
 
 
 
 
 
 
 
 
 
 
65882a7
03a856a
 
 
 
 
 
 
65882a7
1932d9e
65882a7
894e005
9098160
65882a7
03a856a
894e005
 
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
1932d9e
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
65882a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a856a
 
 
dbd7242
 
6426e9a
 
 
 
 
 
 
3daafe7
03a856a
7aaced4
03a856a
3daafe7
03a856a
529fb74
bbd33e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a89b59d
 
dbd7242
03a856a
3daafe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7383609
 
 
 
 
 
 
 
 
 
3daafe7
4a47952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
894e005
 
 
 
 
 
 
 
 
 
 
03a856a
 
4a47952
 
 
 
 
 
03a856a
4a47952
03a856a
 
 
 
 
 
4a47952
03a856a
dbd7242
4a47952
03a856a
 
 
 
 
 
 
 
 
dbd7242
894e005
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
webui
'''
import spaces
import os

os.system('pip install scikit-image')
os.system('pip install IPython')
import random
from datetime import datetime
from pathlib import Path

import cv2
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_echo import EchoUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echo_mimic import Audio2VideoPipeline
from src.utils.util import save_videos_grid, crop_and_pad
from src.models.face_locator import FaceLocator
from moviepy.editor import VideoFileClip, AudioFileClip
from facenet_pytorch import MTCNN
import argparse

import gradio as gr

import huggingface_hub

import pickle
from src.utils.draw_utils import FaceMeshVisualizer
from src.utils.motion_utils import motion_sync
from src.utils.mp_utils  import LMKExtractor


huggingface_hub.snapshot_download(
    repo_id='BadToBest/EchoMimic',
    local_dir='./pretrained_weights',
    local_dir_use_symlinks=False,
)

is_shared_ui = True if "fffiloni/EchoMimic" in os.environ['SPACE_ID'] else False
available_property = False if is_shared_ui else True
advanced_settings_label = "Advanced Configuration (only for duplicated spaces)" if is_shared_ui else "Advanced Configuration"

default_values = {
    "width": 512,
    "height": 512,
    "length": 1200,
    "seed": 420,
    "facemask_dilation_ratio": 0.1,
    "facecrop_dilation_ratio": 0.5,
    "context_frames": 12,
    "context_overlap": 3,
    "cfg": 2.5,
    "steps": 30,
    "sample_rate": 16000,
    "fps": 24,
    "device": "cuda"
}

ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
    print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
    print("add ffmpeg to path")
    os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"


config_path = "./configs/prompts/animation.yaml"
config = OmegaConf.load(config_path)
if config.weight_dtype == "fp16":
    weight_dtype = torch.float16
else:
    weight_dtype = torch.float32

device = "cuda"
if not torch.cuda.is_available():
    device = "cpu"

inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)

############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path).to("cuda", dtype=weight_dtype)

## reference net init
reference_unet = UNet2DConditionModel.from_pretrained(
    config.pretrained_base_model_path,
    subfolder="unet",
).to(dtype=weight_dtype, device=device)
reference_unet.load_state_dict(torch.load(config.reference_unet_path, map_location="cpu"))

## denoising net init
if os.path.exists(config.motion_module_path):
    ### stage1 + stage2
    denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
        config.pretrained_base_model_path,
        config.motion_module_path,
        subfolder="unet",
        unet_additional_kwargs=infer_config.unet_additional_kwargs,
    ).to(dtype=weight_dtype, device=device)
else:
    ### only stage1
    denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
        config.pretrained_base_model_path,
        "",
        subfolder="unet",
        unet_additional_kwargs={
            "use_motion_module": False,
            "unet_use_temporal_attention": False,
            "cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim
        }
    ).to(dtype=weight_dtype, device=device)

denoising_unet.load_state_dict(torch.load(config.denoising_unet_path, map_location="cpu"), strict=False)

## face locator init
face_locator = FaceLocator(320, conditioning_channels=1, block_out_channels=(16, 32, 96, 256)).to(dtype=weight_dtype, device="cuda")
face_locator.load_state_dict(torch.load(config.face_locator_path, map_location='cpu'))

## load audio processor params
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)

## load face detector params
face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device)

############# model_init finished #############

sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)

pipe = Audio2VideoPipeline(
    vae=vae,
    reference_unet=reference_unet,
    denoising_unet=denoising_unet,
    audio_guider=audio_processor,
    face_locator=face_locator,
    scheduler=scheduler,
).to("cuda", dtype=weight_dtype)

def select_face(det_bboxes, probs):
    ## max face from faces that the prob is above 0.8
    ## box: xyxy
    if det_bboxes is None or probs is None:
        return None
    filtered_bboxes = []
    for bbox_i in range(len(det_bboxes)):
        if probs[bbox_i] > 0.8:
            filtered_bboxes.append(det_bboxes[bbox_i])
    if len(filtered_bboxes) == 0:
        return None
    sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True)
    return sorted_bboxes[0]

lmk_extractor = LMKExtractor()

def face_detection(uploaded_img, facemask_dilation_ratio, facecrop_dilation_ratio, width, height):
    face_img = cv2.imread(uploaded_img)
    if face_img is None:
        raise gr.Error("input image should be uploaded or selected.")
    face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
    det_bboxes, probs = face_detector.detect(face_img)
    select_bbox = select_face(det_bboxes, probs)
    if select_bbox is None:
        face_mask[:, :] = 255
    else:
        xyxy = select_bbox[:4]
        xyxy = np.round(xyxy).astype('int')
        rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
        r_pad = int((re - rb) * facemask_dilation_ratio)
        c_pad = int((ce - cb) * facemask_dilation_ratio)
        face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255

        r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
        c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
        crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
        face_img = crop_and_pad(face_img, crop_rect)
        face_mask = crop_and_pad(face_mask, crop_rect)
        face_img = cv2.resize(face_img, (width, height))
        face_mask = cv2.resize(face_mask, (width, height))
    
    print('face detect done.')
    return face_img, face_mask

@spaces.GPU(duration=300)
def video_pipe(face_img, face_mask, uploaded_audio, width, height, length, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
    face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
    ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])

    video = pipe(
        ref_image_pil,
        uploaded_audio,
        face_mask_tensor,
        width,
        height,
        length,
        steps,
        cfg,
        audio_sample_rate=sample_rate,
        context_frames=context_frames,
        fps=fps,
        context_overlap=context_overlap
    ).videos
    print('video pipe done.')

    save_dir = Path("output/tmp")
    save_dir.mkdir(exist_ok=True, parents=True)
    output_video_path = save_dir / "output_video.mp4"
    save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps)

    video_clip = VideoFileClip(str(output_video_path))
    audio_clip = AudioFileClip(uploaded_audio)
    final_output_path = save_dir / "output_video_with_audio.mp4"
    video_clip = video_clip.set_audio(audio_clip)
    video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")

    return final_output_path

def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
    face_img, face_mask = face_detection(uploaded_img, facemask_dilation_ratio, facecrop_dilation_ratio, width, height)
    final_output_path = video_pipe(face_img, face_mask, uploaded_audio, width, height, length, context_frames, context_overlap, cfg, steps, sample_rate, fps, device)
    return final_output_path


# @spaces.GPU
# def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
#     #### face musk prepare
#     face_img = cv2.imread(uploaded_img)
#     if face_img is None:
#         raise gr.Error("input image should be uploaded or selected.")
#     face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
#     det_bboxes, probs = face_detector.detect(face_img)
#     select_bbox = select_face(det_bboxes, probs)
#     if select_bbox is None:
#         face_mask[:, :] = 255
#     else:
#         xyxy = select_bbox[:4]
#         xyxy = np.round(xyxy).astype('int')
#         rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
#         r_pad = int((re - rb) * facemask_dilation_ratio)
#         c_pad = int((ce - cb) * facemask_dilation_ratio)
#         face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
        
#         #### face crop
#         r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
#         c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
#         crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
#         face_img = crop_and_pad(face_img, crop_rect)
#         face_mask = crop_and_pad(face_mask, crop_rect)
#         face_img = cv2.resize(face_img, (width, height))
#         face_mask = cv2.resize(face_mask, (width, height))
#     print('face detect done.')
#     # ==================== face_locator =====================
#     '''
#     driver_video = "./assets/driven_videos/c.mp4"

#     input_frames_cv2 = [cv2.resize(center_crop_cv2(pil_to_cv2(i)), (512, 512)) for i in pils_from_video(driver_video)]
#     ref_det = lmk_extractor(face_img)

#     visualizer = FaceMeshVisualizer(draw_iris=False, draw_mouse=False)
    
#     pose_list = []
#     sequence_driver_det = []
#     try: 
#         for frame in input_frames_cv2:
#             result = lmk_extractor(frame)
#             assert result is not None, "{}, bad video, face not detected".format(driver_video)
#             sequence_driver_det.append(result)
#     except:
#         print("face detection failed")
#         exit()
    
#     sequence_det_ms = motion_sync(sequence_driver_det, ref_det)
#     for p in sequence_det_ms:
#         tgt_musk = visualizer.draw_landmarks((width, height), p)
#         tgt_musk_pil = Image.fromarray(np.array(tgt_musk).astype(np.uint8)).convert('RGB')
#         pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device="cuda").permute(2,0,1) / 255.0)
#     '''
#     # face_mask_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
#     face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
    
#     ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
    
#     #del pose_list, sequence_det_ms, sequence_driver_det, input_frames_cv2

#     video = pipe(
#         ref_image_pil,
#         uploaded_audio,
#         face_mask_tensor,
#         width,
#         height,
#         length,
#         steps,
#         cfg,
#         #generator=generator,
#         audio_sample_rate=sample_rate,
#         context_frames=context_frames,
#         fps=fps,
#         context_overlap=context_overlap
#     ).videos
#     print('video pipe done.')

#     save_dir = Path("output/tmp")
#     save_dir.mkdir(exist_ok=True, parents=True)
#     output_video_path = save_dir / "output_video.mp4"
#     save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps)

#     video_clip = VideoFileClip(str(output_video_path))
#     audio_clip = AudioFileClip(uploaded_audio)
#     final_output_path = save_dir / "output_video_with_audio.mp4"
#     video_clip = video_clip.set_audio(audio_clip)
#     video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")

#     return final_output_path
  
with gr.Blocks() as demo:
    gr.Markdown('# EchoMimic')
    gr.Markdown('## Lifelike Audio-Driven Portrait Animations through Editable Landmark Conditioning')
    gr.Markdown('Inference time: from ~7mins/240frames to ~50s/240frames on V100 GPU')
    gr.HTML("""
    <div style="display:flex;column-gap:4px;">
        <a href='https://badtobest.github.io/echomimic.html'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
        <a href='https://huggingface.co/BadToBest/EchoMimic'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
        <a href='https://arxiv.org/abs/2407.08136'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
    </div>
    """)
    
    with gr.Row():
        with gr.Column(min_width=250):
            uploaded_img = gr.Image(type="filepath", label="Reference Image")
        with gr.Column(min_width=250):
            uploaded_audio = gr.Audio(type="filepath", label="Input Audio")
            with gr.Accordion(label=advanced_settings_label, open=False):
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=128, maximum=1024, value=default_values["width"], interactive=available_property)
                    height = gr.Slider(label="Height", minimum=128, maximum=1024, value=default_values["height"], interactive=available_property)
                with gr.Row():
                    length = gr.Slider(label="Length", minimum=100, maximum=5000, value=default_values["length"], interactive=available_property)
                    seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=default_values["seed"], interactive=available_property)
                with gr.Row():
                    facemask_dilation_ratio = gr.Slider(label="Facemask Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facemask_dilation_ratio"], interactive=available_property)
                    facecrop_dilation_ratio = gr.Slider(label="Facecrop Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facecrop_dilation_ratio"], interactive=available_property)
                with gr.Row():
                    context_frames = gr.Slider(label="Context Frames", minimum=0, maximum=50, step=1, value=default_values["context_frames"], interactive=available_property)
                    context_overlap = gr.Slider(label="Context Overlap", minimum=0, maximum=10, step=1, value=default_values["context_overlap"], interactive=available_property)
                with gr.Row():
                    cfg = gr.Slider(label="CFG", minimum=0.0, maximum=10.0, step=0.1, value=default_values["cfg"], interactive=available_property)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=default_values["steps"], interactive=available_property)
                with gr.Row():
                    sample_rate = gr.Slider(label="Sample Rate", minimum=8000, maximum=48000, step=1000, value=default_values["sample_rate"], interactive=available_property)
                    fps = gr.Slider(label="FPS", minimum=1, maximum=60, step=1, value=default_values["fps"], interactive=available_property)
                    device = gr.Radio(label="Device", choices=["cuda", "cpu"], value=default_values["device"], interactive=available_property)
            
        with gr.Column(min_width=250):
            generate_button = gr.Button("Generate Video")
            output_video = gr.Video()
    with gr.Row():
        
        gr.Examples(
            label = "Portrait examples",
            examples = [
                ['assets/test_imgs/a.png'],
                ['assets/test_imgs/b.png'],
                ['assets/test_imgs/c.png'],
                ['assets/test_imgs/d.png'],
                ['assets/test_imgs/e.png']
            ],
            inputs = [uploaded_img]
        )
        gr.Examples(
            label = "Audio examples",
            examples = [
                ['assets/test_audios/chunnuanhuakai.wav'],
                ['assets/test_audios/chunwang.wav'],
                ['assets/test_audios/echomimic_en_girl.wav'],
                ['assets/test_audios/echomimic_en.wav'],
                ['assets/test_audios/echomimic_girl.wav'],
                ['assets/test_audios/echomimic.wav'],
                ['assets/test_audios/jane.wav'],
                ['assets/test_audios/mei.wav'],
                ['assets/test_audios/walden.wav'],
                ['assets/test_audios/yun.wav'],
            ],
            inputs = [uploaded_audio]
        )
        # gr.HTML("""
        # <div style="display:flex;column-gap:4px;">
        #     <a href="https://huggingface.co/spaces/fffiloni/EchoMimic?duplicate=true">
        #         <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-xl.svg" alt="Duplicate this Space">
        #     </a>
        #     <a href="https://huggingface.co/fffiloni">
        #         <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-xl-dark.svg" alt="Follow me on HF">
        #     </a>
        # </div>
        # """)
    
    # def generate_video(uploaded_img, uploaded_audio, facemask_dilation_ratio=default_values["facemask_dilation_ratio"],
    #                    facecrop_dilation_ratio=default_values["facecrop_dilation_ratio"],
    #                    context_frames=default_values["context_frames"],
    #                    context_overlap=default_values["context_overlap"],
    #                    cfg=default_values["cfg"],
    #                    steps=default_values["steps"],
    #                    sample_rate=default_values["sample_rate"],
    #                    fps=default_values["fps"],
    #                    device=default_values["device"],
    #                    width=default_values["width"],
    #                    height=default_values["height"],
    #                    length=default_values["length"] ):

    #     final_output_path = process_video(
    #         uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device
    #     )        
    #     output_video= final_output_path
    #     return final_output_path

    # generate_button.click(
    #     generate_video,
    #     inputs=[
    #         uploaded_img,
    #         uploaded_audio,
    #         # width,
    #         # height,
    #         # length,
    #         # seed,
    #         # facemask_dilation_ratio,
    #         # facecrop_dilation_ratio,
    #         # context_frames,
    #         # context_overlap,
    #         # cfg,
    #         # steps,
    #         # sample_rate,
    #         # fps,
    #         # device
    #     ],
    #     outputs=output_video,
    #     show_api=False
    # )
    def generate_video(uploaded_img, uploaded_audio,
                       facemask_dilation_ratio=default_values["facemask_dilation_ratio"],
                       facecrop_dilation_ratio=default_values["facecrop_dilation_ratio"],
                       context_frames=default_values["context_frames"],
                       context_overlap=default_values["context_overlap"],
                       cfg=default_values["cfg"],
                       steps=default_values["steps"],
                       sample_rate=default_values["sample_rate"],
                       fps=default_values["fps"],
                       device=default_values["device"],
                       width=default_values["width"],
                       height=default_values["height"],
                       length=default_values["length"] ):

        final_output_path = process_video(
            uploaded_img, 
            uploaded_audio, width, height, 
            length, facemask_dilation_ratio, 
            facecrop_dilation_ratio, context_frames, 
            context_overlap, cfg, steps, 
            sample_rate, fps, device
        )        
        output_video = final_output_path
        return final_output_path

    generate_button.click(
        generate_video,
        inputs=[
            uploaded_img,
            uploaded_audio
        ],
        outputs=output_video,
        show_progress=True
    )
parser = argparse.ArgumentParser(description='EchoMimic')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=7680, help='Server port')
args = parser.parse_args()

# demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)

if __name__ == '__main__':
    demo.queue(max_size=3).launch(show_api=False, show_error=True)
    #demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)