Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,271 Bytes
03a856a 1ba48ad 03a856a 7f52dfe b0762c4 03a856a 0616d16 894e005 e9c3b34 0616d16 529fb74 03a856a c1f181e 03a856a 894e005 65882a7 03a856a 1932d9e 03a856a 65882a7 03a856a 65882a7 1932d9e 65882a7 894e005 9098160 65882a7 03a856a 894e005 03a856a 1932d9e 03a856a 65882a7 03a856a dbd7242 6426e9a 3daafe7 03a856a 7aaced4 03a856a 3daafe7 03a856a 529fb74 bbd33e6 a89b59d dbd7242 03a856a 3daafe7 7383609 3daafe7 4a47952 894e005 03a856a 4a47952 03a856a 4a47952 03a856a 4a47952 03a856a dbd7242 4a47952 03a856a dbd7242 894e005 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
webui
'''
import spaces
import os
os.system('pip install scikit-image')
os.system('pip install IPython')
import random
from datetime import datetime
from pathlib import Path
import cv2
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_echo import EchoUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echo_mimic import Audio2VideoPipeline
from src.utils.util import save_videos_grid, crop_and_pad
from src.models.face_locator import FaceLocator
from moviepy.editor import VideoFileClip, AudioFileClip
from facenet_pytorch import MTCNN
import argparse
import gradio as gr
import huggingface_hub
import pickle
from src.utils.draw_utils import FaceMeshVisualizer
from src.utils.motion_utils import motion_sync
from src.utils.mp_utils import LMKExtractor
huggingface_hub.snapshot_download(
repo_id='BadToBest/EchoMimic',
local_dir='./pretrained_weights',
local_dir_use_symlinks=False,
)
is_shared_ui = True if "fffiloni/EchoMimic" in os.environ['SPACE_ID'] else False
available_property = False if is_shared_ui else True
advanced_settings_label = "Advanced Configuration (only for duplicated spaces)" if is_shared_ui else "Advanced Configuration"
default_values = {
"width": 512,
"height": 512,
"length": 1200,
"seed": 420,
"facemask_dilation_ratio": 0.1,
"facecrop_dilation_ratio": 0.5,
"context_frames": 12,
"context_overlap": 3,
"cfg": 2.5,
"steps": 30,
"sample_rate": 16000,
"fps": 24,
"device": "cuda"
}
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
print("add ffmpeg to path")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
config_path = "./configs/prompts/animation.yaml"
config = OmegaConf.load(config_path)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
device = "cuda"
if not torch.cuda.is_available():
device = "cpu"
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path).to("cuda", dtype=weight_dtype)
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=device)
reference_unet.load_state_dict(torch.load(config.reference_unet_path, map_location="cpu"))
## denoising net init
if os.path.exists(config.motion_module_path):
### stage1 + stage2
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=device)
else:
### only stage1
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
"",
subfolder="unet",
unet_additional_kwargs={
"use_motion_module": False,
"unet_use_temporal_attention": False,
"cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim
}
).to(dtype=weight_dtype, device=device)
denoising_unet.load_state_dict(torch.load(config.denoising_unet_path, map_location="cpu"), strict=False)
## face locator init
face_locator = FaceLocator(320, conditioning_channels=1, block_out_channels=(16, 32, 96, 256)).to(dtype=weight_dtype, device="cuda")
face_locator.load_state_dict(torch.load(config.face_locator_path, map_location='cpu'))
## load audio processor params
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)
## load face detector params
face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device)
############# model_init finished #############
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
pipe = Audio2VideoPipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
face_locator=face_locator,
scheduler=scheduler,
).to("cuda", dtype=weight_dtype)
def select_face(det_bboxes, probs):
## max face from faces that the prob is above 0.8
## box: xyxy
if det_bboxes is None or probs is None:
return None
filtered_bboxes = []
for bbox_i in range(len(det_bboxes)):
if probs[bbox_i] > 0.8:
filtered_bboxes.append(det_bboxes[bbox_i])
if len(filtered_bboxes) == 0:
return None
sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True)
return sorted_bboxes[0]
lmk_extractor = LMKExtractor()
def face_detection(uploaded_img, facemask_dilation_ratio, facecrop_dilation_ratio, width, height):
face_img = cv2.imread(uploaded_img)
if face_img is None:
raise gr.Error("input image should be uploaded or selected.")
face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
det_bboxes, probs = face_detector.detect(face_img)
select_bbox = select_face(det_bboxes, probs)
if select_bbox is None:
face_mask[:, :] = 255
else:
xyxy = select_bbox[:4]
xyxy = np.round(xyxy).astype('int')
rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
r_pad = int((re - rb) * facemask_dilation_ratio)
c_pad = int((ce - cb) * facemask_dilation_ratio)
face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
face_img = crop_and_pad(face_img, crop_rect)
face_mask = crop_and_pad(face_mask, crop_rect)
face_img = cv2.resize(face_img, (width, height))
face_mask = cv2.resize(face_mask, (width, height))
print('face detect done.')
return face_img, face_mask
@spaces.GPU(duration=300)
def video_pipe(face_img, face_mask, uploaded_audio, width, height, length, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
video = pipe(
ref_image_pil,
uploaded_audio,
face_mask_tensor,
width,
height,
length,
steps,
cfg,
audio_sample_rate=sample_rate,
context_frames=context_frames,
fps=fps,
context_overlap=context_overlap
).videos
print('video pipe done.')
save_dir = Path("output/tmp")
save_dir.mkdir(exist_ok=True, parents=True)
output_video_path = save_dir / "output_video.mp4"
save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps)
video_clip = VideoFileClip(str(output_video_path))
audio_clip = AudioFileClip(uploaded_audio)
final_output_path = save_dir / "output_video_with_audio.mp4"
video_clip = video_clip.set_audio(audio_clip)
video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")
return final_output_path
def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
face_img, face_mask = face_detection(uploaded_img, facemask_dilation_ratio, facecrop_dilation_ratio, width, height)
final_output_path = video_pipe(face_img, face_mask, uploaded_audio, width, height, length, context_frames, context_overlap, cfg, steps, sample_rate, fps, device)
return final_output_path
# @spaces.GPU
# def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
# #### face musk prepare
# face_img = cv2.imread(uploaded_img)
# if face_img is None:
# raise gr.Error("input image should be uploaded or selected.")
# face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
# det_bboxes, probs = face_detector.detect(face_img)
# select_bbox = select_face(det_bboxes, probs)
# if select_bbox is None:
# face_mask[:, :] = 255
# else:
# xyxy = select_bbox[:4]
# xyxy = np.round(xyxy).astype('int')
# rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
# r_pad = int((re - rb) * facemask_dilation_ratio)
# c_pad = int((ce - cb) * facemask_dilation_ratio)
# face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
# #### face crop
# r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
# c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
# crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
# face_img = crop_and_pad(face_img, crop_rect)
# face_mask = crop_and_pad(face_mask, crop_rect)
# face_img = cv2.resize(face_img, (width, height))
# face_mask = cv2.resize(face_mask, (width, height))
# print('face detect done.')
# # ==================== face_locator =====================
# '''
# driver_video = "./assets/driven_videos/c.mp4"
# input_frames_cv2 = [cv2.resize(center_crop_cv2(pil_to_cv2(i)), (512, 512)) for i in pils_from_video(driver_video)]
# ref_det = lmk_extractor(face_img)
# visualizer = FaceMeshVisualizer(draw_iris=False, draw_mouse=False)
# pose_list = []
# sequence_driver_det = []
# try:
# for frame in input_frames_cv2:
# result = lmk_extractor(frame)
# assert result is not None, "{}, bad video, face not detected".format(driver_video)
# sequence_driver_det.append(result)
# except:
# print("face detection failed")
# exit()
# sequence_det_ms = motion_sync(sequence_driver_det, ref_det)
# for p in sequence_det_ms:
# tgt_musk = visualizer.draw_landmarks((width, height), p)
# tgt_musk_pil = Image.fromarray(np.array(tgt_musk).astype(np.uint8)).convert('RGB')
# pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device="cuda").permute(2,0,1) / 255.0)
# '''
# # face_mask_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
# face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
# ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
# #del pose_list, sequence_det_ms, sequence_driver_det, input_frames_cv2
# video = pipe(
# ref_image_pil,
# uploaded_audio,
# face_mask_tensor,
# width,
# height,
# length,
# steps,
# cfg,
# #generator=generator,
# audio_sample_rate=sample_rate,
# context_frames=context_frames,
# fps=fps,
# context_overlap=context_overlap
# ).videos
# print('video pipe done.')
# save_dir = Path("output/tmp")
# save_dir.mkdir(exist_ok=True, parents=True)
# output_video_path = save_dir / "output_video.mp4"
# save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps)
# video_clip = VideoFileClip(str(output_video_path))
# audio_clip = AudioFileClip(uploaded_audio)
# final_output_path = save_dir / "output_video_with_audio.mp4"
# video_clip = video_clip.set_audio(audio_clip)
# video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")
# return final_output_path
with gr.Blocks() as demo:
gr.Markdown('# EchoMimic')
gr.Markdown('## Lifelike Audio-Driven Portrait Animations through Editable Landmark Conditioning')
gr.Markdown('Inference time: from ~7mins/240frames to ~50s/240frames on V100 GPU')
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href='https://badtobest.github.io/echomimic.html'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
<a href='https://huggingface.co/BadToBest/EchoMimic'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
<a href='https://arxiv.org/abs/2407.08136'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
</div>
""")
with gr.Row():
with gr.Column(min_width=250):
uploaded_img = gr.Image(type="filepath", label="Reference Image")
with gr.Column(min_width=250):
uploaded_audio = gr.Audio(type="filepath", label="Input Audio")
with gr.Accordion(label=advanced_settings_label, open=False):
with gr.Row():
width = gr.Slider(label="Width", minimum=128, maximum=1024, value=default_values["width"], interactive=available_property)
height = gr.Slider(label="Height", minimum=128, maximum=1024, value=default_values["height"], interactive=available_property)
with gr.Row():
length = gr.Slider(label="Length", minimum=100, maximum=5000, value=default_values["length"], interactive=available_property)
seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=default_values["seed"], interactive=available_property)
with gr.Row():
facemask_dilation_ratio = gr.Slider(label="Facemask Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facemask_dilation_ratio"], interactive=available_property)
facecrop_dilation_ratio = gr.Slider(label="Facecrop Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facecrop_dilation_ratio"], interactive=available_property)
with gr.Row():
context_frames = gr.Slider(label="Context Frames", minimum=0, maximum=50, step=1, value=default_values["context_frames"], interactive=available_property)
context_overlap = gr.Slider(label="Context Overlap", minimum=0, maximum=10, step=1, value=default_values["context_overlap"], interactive=available_property)
with gr.Row():
cfg = gr.Slider(label="CFG", minimum=0.0, maximum=10.0, step=0.1, value=default_values["cfg"], interactive=available_property)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=default_values["steps"], interactive=available_property)
with gr.Row():
sample_rate = gr.Slider(label="Sample Rate", minimum=8000, maximum=48000, step=1000, value=default_values["sample_rate"], interactive=available_property)
fps = gr.Slider(label="FPS", minimum=1, maximum=60, step=1, value=default_values["fps"], interactive=available_property)
device = gr.Radio(label="Device", choices=["cuda", "cpu"], value=default_values["device"], interactive=available_property)
with gr.Column(min_width=250):
generate_button = gr.Button("Generate Video")
output_video = gr.Video()
with gr.Row():
gr.Examples(
label = "Portrait examples",
examples = [
['assets/test_imgs/a.png'],
['assets/test_imgs/b.png'],
['assets/test_imgs/c.png'],
['assets/test_imgs/d.png'],
['assets/test_imgs/e.png']
],
inputs = [uploaded_img]
)
gr.Examples(
label = "Audio examples",
examples = [
['assets/test_audios/chunnuanhuakai.wav'],
['assets/test_audios/chunwang.wav'],
['assets/test_audios/echomimic_en_girl.wav'],
['assets/test_audios/echomimic_en.wav'],
['assets/test_audios/echomimic_girl.wav'],
['assets/test_audios/echomimic.wav'],
['assets/test_audios/jane.wav'],
['assets/test_audios/mei.wav'],
['assets/test_audios/walden.wav'],
['assets/test_audios/yun.wav'],
],
inputs = [uploaded_audio]
)
# gr.HTML("""
# <div style="display:flex;column-gap:4px;">
# <a href="https://huggingface.co/spaces/fffiloni/EchoMimic?duplicate=true">
# <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-xl.svg" alt="Duplicate this Space">
# </a>
# <a href="https://huggingface.co/fffiloni">
# <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-xl-dark.svg" alt="Follow me on HF">
# </a>
# </div>
# """)
# def generate_video(uploaded_img, uploaded_audio, facemask_dilation_ratio=default_values["facemask_dilation_ratio"],
# facecrop_dilation_ratio=default_values["facecrop_dilation_ratio"],
# context_frames=default_values["context_frames"],
# context_overlap=default_values["context_overlap"],
# cfg=default_values["cfg"],
# steps=default_values["steps"],
# sample_rate=default_values["sample_rate"],
# fps=default_values["fps"],
# device=default_values["device"],
# width=default_values["width"],
# height=default_values["height"],
# length=default_values["length"] ):
# final_output_path = process_video(
# uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device
# )
# output_video= final_output_path
# return final_output_path
# generate_button.click(
# generate_video,
# inputs=[
# uploaded_img,
# uploaded_audio,
# # width,
# # height,
# # length,
# # seed,
# # facemask_dilation_ratio,
# # facecrop_dilation_ratio,
# # context_frames,
# # context_overlap,
# # cfg,
# # steps,
# # sample_rate,
# # fps,
# # device
# ],
# outputs=output_video,
# show_api=False
# )
def generate_video(uploaded_img, uploaded_audio,
facemask_dilation_ratio=default_values["facemask_dilation_ratio"],
facecrop_dilation_ratio=default_values["facecrop_dilation_ratio"],
context_frames=default_values["context_frames"],
context_overlap=default_values["context_overlap"],
cfg=default_values["cfg"],
steps=default_values["steps"],
sample_rate=default_values["sample_rate"],
fps=default_values["fps"],
device=default_values["device"],
width=default_values["width"],
height=default_values["height"],
length=default_values["length"] ):
final_output_path = process_video(
uploaded_img,
uploaded_audio, width, height,
length, facemask_dilation_ratio,
facecrop_dilation_ratio, context_frames,
context_overlap, cfg, steps,
sample_rate, fps, device
)
output_video = final_output_path
return final_output_path
generate_button.click(
generate_video,
inputs=[
uploaded_img,
uploaded_audio
],
outputs=output_video,
show_progress=True
)
parser = argparse.ArgumentParser(description='EchoMimic')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=7680, help='Server port')
args = parser.parse_args()
# demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)
if __name__ == '__main__':
demo.queue(max_size=3).launch(show_api=False, show_error=True)
#demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True) |