BK-Lee commited on
Commit
f8800ce
1 Parent(s): 2cfb279
app.py CHANGED
@@ -4,7 +4,6 @@ import spaces
4
  import time
5
  import torch
6
  import gradio as gr
7
- from config import *
8
  from PIL import Image
9
  from utils.utils import *
10
  from threading import Thread
 
4
  import time
5
  import torch
6
  import gradio as gr
 
7
  from PIL import Image
8
  from utils.utils import *
9
  from threading import Thread
config.py DELETED
@@ -1,57 +0,0 @@
1
- # OpenAI Key
2
- OPENAI_KEY = ""
3
-
4
- # Dataset root
5
- DATASET_ROOT=""
6
-
7
- # Pre Meteor Dataset
8
- METEOR_DATASET= "Meteor.json"
9
-
10
- # Various json and parquet files
11
- SHAREGPT4V_CAPTION = "sharegpt4v_instruct_gpt4-vision_cap100k.json"
12
- SHAREGPT4V_INSTRUCTION = "sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json"
13
- MINIGEMINI_INSTRUCTION = "minigemini_instruction.json"
14
- DOCDOWNSTREAM = 'train.jsonl'
15
- DOCREASON = 'detailed_explanation.jsonl'
16
- GLLAVA_ALIGN = "gllava_align.parquet"
17
- GLLAVA_QA = "gllava_qa.parquet"
18
- MATHVISION = "mathvision.parquet"
19
- MATHINSTRUCT = "MathInstruct.json"
20
- MATHPLUS = "mathplus.parquet"
21
-
22
- # Json files for Evaluation
23
- VQAV2 = "VQAv2/v2_OpenEnded_mscoco_test2015_questions.json"
24
- GQA = "gqa/testdev_balanced_questions.json"
25
- SQA = "ScienceQA/problems.json"
26
- SQA_SPLIT = "ScienceQA/pid_splits.json"
27
- VIZWIZ = "VizWiz/test.json"
28
- TEXTVQA = "TextVQA/llava_textvqa_val_v051_ocr.json"
29
- TEXTVQA_ANNOTATIONS = "TextVQA/TextVQA_0.5.1_val.json"
30
- POPE_POPULAR = "POPE/coco_pope_popular.json"
31
- POPE_ADVERSARIAL = "POPE/coco_pope_adversarial.json"
32
- POPE_RANDOM = "POPE/coco_pope_random.json"
33
- MME = "MME_Benchmark_release_version/llava_mme.json"
34
- MME_DIR = "MME_Benchmark_release_version"
35
- MMBENCH = "MMBench/MMBench_TEST_EN_legacy.tsv"
36
- MMBENCH_CN = "MMBench/MMBench_TEST_CN_legacy.tsv"
37
- MMBENCH_DEV = "MMBench/mmbench_dev_20230712.tsv"
38
- MMBENCH_CN_DEV = "MMBench/mmbench_dev_cn_20231003.tsv"
39
- QBENCH = "LLVisionQA-QBench/llvisionqa_dev.json"
40
- QBENCH_CN = "LLVisionQA-QBench/质衡-问答-验证集.json"
41
- MMVET = "mm-vet/mm-vet.json"
42
- MMMU = "MMMU/*/validation*"
43
- MATHVISTA = "MathVista/testmini-00000-of-00001-725687bf7a18d64b.parquet"
44
- AI2D = "ai2d/ai2d_test.json"
45
- HALLUSIONBENCH = "HallusionBench/HallusionBench.json"
46
- CHARTQA = "chartqa/test/test_augmented.json"
47
- SEED = "SEED-Bench/SEED-Bench.json"
48
- LLAVA = "llava-bench-in-the-wild/questions.jsonl"
49
- # BLINK =
50
- MATHVERSE = "MathVerse/testmini.json"
51
- MATHVERSE_TEXT_ONLY = "MathVerse/testmini_text_only.json"
52
- MMSTAR = "MMStar/mmstar.parquet"
53
-
54
- # Available evaluation datasets
55
- EVAL_DATASETS = ["qbench", "sqa", "ai2d", "chartqa", "seed", "pope", "hallusionbench", "mme", \
56
- "mathvista", "mmbench", "mmbench_cn", "mmvet", "llava", "mmstar", "mathverse"]
57
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
loader/create_eval_dataset.py DELETED
@@ -1,410 +0,0 @@
1
- import os
2
- import json
3
- import math
4
- import glob
5
- from config import *
6
- from PIL import Image
7
- import pandas as pd
8
- import pyarrow.parquet as pq
9
- import torch.nn.functional as F
10
- from eval.utils import *
11
- from torch.utils.data import Dataset
12
- from torchvision.transforms.functional import pil_to_tensor
13
-
14
- class CreateEvalDataset(Dataset):
15
- def __init__(self):
16
- super(CreateEvalDataset, self).__init__()
17
-
18
- """
19
- Eval Datasets
20
-
21
- - VQAv2
22
- - GQA
23
- - SQA-IMG
24
- - VizWiz
25
- - TextVQA
26
- - POPE
27
- - MME
28
- - MMBench
29
- - MMBench-CN
30
- - QBench
31
- - MM-Vet
32
- - MMMU
33
- - MathVista
34
- - AI2D
35
- - HallusionBench
36
- - ChartQA
37
- - SEED
38
- - LLaVA Wild
39
- - BLINK
40
- - MathVerse
41
-
42
- """
43
-
44
- # dataset root path
45
- self.dataset_root_path = DATASET_ROOT
46
-
47
- # load test data
48
- pre_vqav2 = json.load(open(os.path.join(DATASET_ROOT, VQAV2)))
49
- pre_gqa = json.load(open(os.path.join(DATASET_ROOT, GQA)))
50
- pre_sqa = json.load(open(os.path.join(DATASET_ROOT, SQA)))
51
- pre_sqa_split = json.load(open(os.path.join(DATASET_ROOT, SQA_SPLIT)))
52
- pre_vizwiz = json.load(open(os.path.join(DATASET_ROOT, VIZWIZ)))
53
- pre_textvqa = json.load(open(os.path.join(DATASET_ROOT, TEXTVQA)))
54
- pre_textvqa_annotations = json.load(open(os.path.join(DATASET_ROOT, TEXTVQA_ANNOTATIONS)))
55
- pre_pope_popular = pd.read_json(os.path.join(DATASET_ROOT, POPE_POPULAR), lines=True)
56
- pre_pope_adversarial= pd.read_json(os.path.join(DATASET_ROOT, POPE_ADVERSARIAL), lines=True)
57
- pre_pope_random = pd.read_json(os.path.join(DATASET_ROOT, POPE_RANDOM), lines=True)
58
- pre_mme = json.load(open(os.path.join(DATASET_ROOT, MME)))
59
- pre_mmbench = pd.read_table(os.path.join(DATASET_ROOT, MMBENCH))
60
- pre_mmbench_dev = pd.read_table(os.path.join(DATASET_ROOT, MMBENCH_DEV))
61
- pre_mmbench_cn = pd.read_table(os.path.join(DATASET_ROOT, MMBENCH_CN))
62
- pre_mmbench_cn_dev = pd.read_table(os.path.join(DATASET_ROOT, MMBENCH_CN_DEV))
63
- pre_qbench = json.load(open(os.path.join(DATASET_ROOT, QBENCH)))
64
- pre_qbench_cn = json.load(open(os.path.join(DATASET_ROOT, QBENCH_CN)))
65
- pre_mmvet = json.load(open(os.path.join(DATASET_ROOT, MMVET)))
66
- mmmu_files = glob.glob(os.path.join(DATASET_ROOT, MMMU))
67
- pre_mmmu = [pq.read_pandas(os.path.join(DATASET_ROOT, mf)).to_pandas() for mf in mmmu_files]
68
- pre_mathvista1 = pq.read_pandas(os.path.join(DATASET_ROOT, MATHVISTA)).to_pandas()
69
- pre_ai2d = json.load(open(os.path.join(DATASET_ROOT, AI2D)))
70
- pre_hallusionbench = json.load(open(os.path.join(DATASET_ROOT, HALLUSIONBENCH)))
71
- pre_chartqa = json.load(open(os.path.join(DATASET_ROOT, CHARTQA)))
72
- pre_seed = json.load(open(os.path.join(DATASET_ROOT, SEED)))
73
- pre_llava = pd.read_json(os.path.join(DATASET_ROOT, LLAVA), lines=True)
74
- # pre_blink = json.load(open(os.path.join(DATASET_ROOT, BLINK)))
75
- pre_mathverse = json.load(open(os.path.join(DATASET_ROOT, MATHVERSE)))
76
- pre_mathverse_text_only = json.load(open(os.path.join(DATASET_ROOT, MATHVERSE_TEXT_ONLY)))
77
- pre_mmstar = pq.read_pandas(os.path.join(DATASET_ROOT, MMSTAR)).to_pandas()
78
-
79
- # data filtering
80
- vqav2 = self.vqav2_filtering(pre_vqav2)
81
- gqa = self.gqa_filtering(pre_gqa)
82
- sqa = self.sqa_filtering(pre_sqa, pre_sqa_split)
83
- vizwiz = self.vizwiz_filtering(pre_vizwiz)
84
- textvqa = self.textvqa_filtering(pre_textvqa, pre_textvqa_annotations)
85
- pope = self.pope_filtering([pre_pope_popular, pre_pope_adversarial, pre_pope_random])
86
- mme = self.mme_filtering(pre_mme)
87
- mmbench = self.mmbench_filtering(pre_mmbench)
88
- mmbench_dev = self.mmbench_filtering(pre_mmbench_dev)
89
- mmbench_cn = self.mmbench_filtering(pre_mmbench_cn)
90
- mmbench_cn_dev = self.mmbench_filtering(pre_mmbench_cn_dev)
91
- qbench = self.qbench_filtering(pre_qbench)
92
- qbench_cn = self.qbench_filtering(pre_qbench_cn)
93
- mmvet = self.mmvet_filtering(pre_mmvet)
94
- mmmu = self.mmmu_filtering(pre_mmmu)
95
- mathvista = self.mathvista_filtering(pre_mathvista1)
96
- ai2d = self.ai2d_filtering(pre_ai2d)
97
- hallusionbench = self.hallusionbench_filtering(pre_hallusionbench)
98
- chartqa = self.chartqa_filtering(pre_chartqa)
99
- seed = self.seed_filtering(pre_seed)
100
- llava = self.llava_filtering(pre_llava)
101
- # blink = self.blink_filtering(pre_blink)
102
- mathverse = self.mathverse_filtering(pre_mathverse, pre_mathverse_text_only)
103
- mmstar = self.mmstar_filtering(pre_mmstar)
104
-
105
- # merging
106
- self.data = {
107
- 'vqav2': vqav2,
108
- 'gqa': gqa,
109
- 'sqa':sqa,
110
- 'vizwiz': vizwiz,
111
- 'textvqa': textvqa,
112
- 'pope': pope,
113
- 'mme': mme,
114
- 'mmbench': mmbench,
115
- 'mmbench_dev': mmbench_dev,
116
- 'mmbench_cn': mmbench_cn,
117
- 'mmbench_cn_dev': mmbench_cn_dev,
118
- 'qbench': qbench,
119
- 'mm-vet': mmvet,
120
- 'mmmu': mmmu,
121
- 'mathvista': mathvista,
122
- 'ai2d': ai2d,
123
- 'hallusionbench': hallusionbench,
124
- 'chartqa': chartqa,
125
- 'seed': seed,
126
- 'llava': llava,
127
- # 'blink': blink,
128
- 'mathverse' : mathverse,
129
- 'mmstar' : mmstar
130
- }
131
-
132
-
133
- def vqav2_filtering(self, pre_data):
134
- data = []
135
- for x in pre_data['questions']:
136
- data.append({'image': f"VQAv2/test2015/COCO_test2015_{x['image_id']:012d}.jpg",
137
- 'question': x['question'],
138
- 'id': x['question_id']})
139
- return data
140
-
141
- def gqa_filtering(self, pre_data):
142
- data = []
143
- for qid, x in pre_data.items():
144
- data.append({'image': f"gqa/images/{x['imageId']}.jpg",
145
- 'question': x['question'],
146
- 'id': qid})
147
- return data
148
-
149
- def sqa_filtering(self, pre_data, pre_sqa_split):
150
- data = []
151
- questions = {idx: pre_data[idx] for idx in pre_sqa_split['test']}
152
- for qid, x in questions.items():
153
- if x['image'] is not None:
154
- choices = '\n'.join(f"{chr(ord('A') + i)}. {choice}" for i, choice in enumerate(x['choices']))
155
- question = '\n'.join([x['hint'], x['question'], choices])
156
- data.append({'image': f"ScienceQA/images/test/{qid}/image.png",
157
- 'question': question,
158
- 'id': qid,
159
- 'candidates': x['choices'],
160
- 'gt': x['answer']})
161
- return data
162
-
163
- def vizwiz_filtering(self, pre_data):
164
- data = []
165
- for qid, x in enumerate(pre_data):
166
- data.append({'image': f"VizWiz/test/{x['image']}",
167
- 'question': x['question'],
168
- 'id': qid})
169
- return data
170
-
171
- def textvqa_filtering(self, pre_data, annotations):
172
- data = []
173
- for x, answer in zip(pre_data, annotations['data']):
174
- data.append({'image': f"TextVQA/train_images/{x['image']}",
175
- 'question': x['text'],
176
- 'id': x['question_id'],
177
- 'gt': answer['answers']})
178
- return data
179
-
180
- def pope_filtering(self, pre_data):
181
- data = []
182
- categories = ['adversarial', 'popular', 'random']
183
- for category, split in zip(categories, pre_data):
184
- for _, x in split.iterrows():
185
- data.append({'image': f"coco2014/val2014/{x['image']}",
186
- 'question': x['text'],
187
- 'id': x['question_id'],
188
- 'category': category})
189
- return data
190
-
191
- def mme_filtering(self, pre_data):
192
- data = []
193
- for x in pre_data:
194
- data.append({'image': f"MME_Benchmark_release_version/{x['image']}",
195
- 'question': x['text'],
196
- 'id': x['question_id'],
197
- 'category': x['category']})
198
- return data
199
-
200
- def mmbench_filtering(self, pre_data):
201
- data = []
202
- for _, x in pre_data.iterrows():
203
- options = ['A', 'B', 'C', 'D']
204
- choice_list = [choice for choice in options if not self.is_none(x[choice])]
205
- choices = '\n'.join(f"{chr(ord('A') + i)}. {x[choice]}" for i, choice in enumerate(choice_list))
206
- question = '\n'.join([x['question'], choices])
207
-
208
- if not self.is_none(x['hint']):
209
- question = '\n'.join([x['hint'], question])
210
-
211
- data.append({'image': x['image'],
212
- 'question': question,
213
- 'id': x['index'],
214
- 'answer': x['answer'] if 'answer' in x else None})
215
- return data
216
-
217
- def qbench_filtering(self, pre_data):
218
- data = []
219
- for qid, x in enumerate(pre_data):
220
- choices = '\n'.join(f"{chr(ord('A') + i)}. {choice}" for i, choice in enumerate(x['candidates']))
221
- question = '\n'.join([x['question'], choices])
222
- data.append({'image': f"LLVisionQA-QBench/images/{x['img_path']}",
223
- 'question': question,
224
- 'id': qid,
225
- 'candidates': x['candidates'],
226
- 'gt': x['correct_ans']})
227
- return data
228
-
229
- def mmvet_filtering(self, pre_data):
230
- data = []
231
- for qid, x in pre_data.items():
232
- data.append({'image': f"mm-vet/images/{x['imagename']}",
233
- 'question': x['question'],
234
- 'id': qid,
235
- 'gt': x['answer'],
236
- 'capability': x['capability']})
237
- return data
238
-
239
- def mmmu_filtering(self, pre_data):
240
- data = []
241
- for split in pre_data:
242
- for _, x in split.iterrows():
243
- index2ans, all_choices = self.get_multi_choice_info(eval(x['options']))
244
- choices = ' '.join([f"{k}. {v}" for k,v in index2ans.items()])
245
- question = '\n'.join([x['question'], choices])
246
- num_images = count_unique_image_tokens(question)
247
- data.append({'images': [x[f"image_{i+1}"]['bytes'] for i in range(num_images)],
248
- 'question': replace_image_tokens(question),
249
- 'id': x['id'],
250
- 'question_type': x['question_type'],
251
- 'gt': x['answer'],
252
- 'index2ans': index2ans,
253
- 'all_choices': all_choices})
254
- return data
255
-
256
- def mathvista_filtering(self, pre_data):
257
- data = []
258
- for _, x in pre_data.iterrows():
259
- skills = x['metadata']['skills'].tolist()
260
- x['metadata']['skills'] = skills
261
- choices = x['choices'].tolist() if x['choices'] is not None else None
262
- data.append({'image': f"MathVista/{x['image']}",
263
- 'question': x['query'],
264
- 'question_type': x['question_type'],
265
- 'answer': x['answer'],
266
- 'answer_type': x['answer_type'],
267
- 'choices': choices,
268
- 'metadata': x['metadata'],
269
- 'precision': x['precision'],
270
- 'id': x['pid']})
271
- return data
272
-
273
- def ai2d_filtering(self, pre_data):
274
- data = []
275
- for x in pre_data:
276
- choices = ' '.join(f"{chr(ord('A') + i)}. {choice}" for i, choice in enumerate(x["metadata"]["answerTexts"]))
277
- question = '\n'.join([x['question'], choices])
278
- image = f"ai2d/abc_images/{x['imageName']}" if x['metadata']['abcLabel'] else f"ai2d/images/{x['imageName']}"
279
- data.append({'image': image,
280
- 'question': question,
281
- 'id': x['metadata']['questionId'],
282
- 'gt': x['metadata']['correctAnswer']})
283
- return data
284
-
285
- def hallusionbench_filtering(self, pre_data):
286
- data = []
287
- for qid, x in enumerate(pre_data):
288
- if x['filename'] is None:
289
- img_path = ""
290
- question = x['question']
291
- else:
292
- img_path = f"HallusionBench/hallusion_bench/{x['filename'][2:]}".format()
293
- question = "<image>" + x['question']
294
- data.append({'image': img_path,
295
- 'question': question,
296
- 'id': qid,
297
- 'gt': x['gt_answer']})
298
- return data
299
-
300
- def chartqa_filtering(self, pre_data):
301
- data = []
302
- for qid, x in enumerate(pre_data):
303
- data.append({'image': f"chartqa/test/png/{x['imgname']}",
304
- 'question': x['query'],
305
- 'id': x['imgname'],
306
- 'gt': x['label']})
307
- return data
308
-
309
- def seed_filtering(self, pre_data):
310
- data = []
311
- for x in pre_data['questions']:
312
- if x['data_type'] != 'image':
313
- continue
314
- choice_list = [key for key in x.keys() if 'choice' in key]
315
- choices = '\n'.join(f"{chr(ord('A') + i)}. {x[choice]}" for i, choice in enumerate(choice_list))
316
- question = '\n'.join([x['question'], choices])
317
- data.append({'image': f"SEED-Bench/SEED-Bench-image/{x['data_id']}",
318
- 'question': question,
319
- 'id': x['question_id'],
320
- 'question_type': x['question_type_id'],
321
- 'gt': x['answer']})
322
- return data
323
-
324
- def llava_filtering(self, pre_data):
325
- data = []
326
- for _, x in pre_data.iterrows():
327
- data.append({'image': f"llava-bench-in-the-wild/images/{x['image']}",
328
- 'question': x['text'],
329
- 'id': x['question_id'],
330
- "category": x['category']})
331
- return data
332
-
333
- def blink_filtering(self, pre_data):
334
- data = []
335
- # TODO
336
- return data
337
-
338
- def mathverse_filtering(self, pre_data, pre_data_text_only):
339
- data = []
340
- for x in pre_data:
341
- data.append({'image': f"MathVerse/images/{x['image']}",
342
- 'question': "<image>" + x['query_wo'],
343
- # 'question': "<image>" + x['query_cot'],
344
- 'id': x['sample_index'],
345
- 'problem_index': x['problem_index'],
346
- 'problem_version': x['problem_version'],
347
- 'gt' : x['answer'],
348
- 'question_type': x['question_type'],
349
- 'metadata' : x['metadata'],
350
- 'query_cot' : x['query_cot'],
351
- 'origin_question': x['question']
352
- })
353
- offset = len(pre_data)
354
- for x in pre_data_text_only:
355
- data.append({'image': "",
356
- 'question': x['query_wo'],
357
- # 'question': x['query_cot'],
358
- 'id': str(int(x['sample_index']) + offset),
359
- 'problem_index': x['problem_index'],
360
- 'problem_version': x['problem_version'],
361
- 'gt' : x['answer'],
362
- 'question_type': x['question_type'],
363
- 'metadata' : x['metadata'],
364
- 'query_cot' : x['query_cot'],
365
- 'origin_question': x['question']
366
- })
367
-
368
- return data
369
-
370
- def is_none(self, value):
371
- return type(value) is float and math.isnan(value)
372
-
373
- def get_options(self, row, options):
374
- parsed_options = []
375
- for option in options:
376
- option_value = row[option]
377
- if self.is_none(option_value):
378
- break
379
- parsed_options.append(option_value)
380
- return parsed_options
381
-
382
- def __len__(self):
383
- return len(self.data)
384
-
385
- def get_multi_choice_info(self, options):
386
- """
387
- Given the list of options for multiple choice question
388
- Return the index2ans and all_choices
389
- """
390
-
391
- start_chr = 'A'
392
- all_choices = []
393
- index2ans = {}
394
- for i, option in enumerate(options):
395
- index2ans[chr(ord(start_chr) + i)] = option
396
- all_choices.append(chr(ord(start_chr) + i))
397
-
398
- return index2ans, all_choices
399
-
400
- def mmstar_filtering(self, pre_data):
401
- data = []
402
- for _, x in pre_data.iterrows():
403
- data.append({'id' : x['index'],
404
- 'question': x['question'],
405
- 'answer': x['answer'],
406
- 'category': x['category'],
407
- 'l2_category': x['l2_category'],
408
- # 'bench': x['bench'],
409
- 'image': x['image']})
410
- return data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/ddp_accel_bf16.yaml DELETED
@@ -1,16 +0,0 @@
1
- compute_environment: LOCAL_MACHINE
2
- debug: false
3
- distributed_type: MULTI_GPU
4
- downcast_bf16: 'no'
5
- gpu_ids: all
6
- machine_rank: 0
7
- main_training_function: main
8
- mixed_precision: no
9
- num_machines: 1
10
- num_processes: 1
11
- rdzv_backend: static
12
- same_network: true
13
- tpu_env: []
14
- tpu_use_cluster: false
15
- tpu_use_sudo: false
16
- use_cpu: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/ddp_accel_fp16.yaml DELETED
@@ -1,16 +0,0 @@
1
- compute_environment: LOCAL_MACHINE
2
- debug: false
3
- distributed_type: MULTI_GPU
4
- downcast_bf16: 'no'
5
- gpu_ids: all
6
- machine_rank: 0
7
- main_training_function: main
8
- mixed_precision: no
9
- num_machines: 1
10
- num_processes: 1
11
- rdzv_backend: static
12
- same_network: true
13
- tpu_env: []
14
- tpu_use_cluster: false
15
- tpu_use_sudo: false
16
- use_cpu: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/ds_accel_fp16.yaml DELETED
@@ -1,23 +0,0 @@
1
- compute_environment: LOCAL_MACHINE
2
- debug: false
3
- deepspeed_config:
4
- gradient_accumulation_steps: 1
5
- offload_optimizer_device: none
6
- offload_param_device: none
7
- zero3_init_flag: false
8
- zero3_save_16bit_model: false
9
- zero_stage: 3
10
- distributed_type: DEEPSPEED
11
- downcast_bf16: 'no'
12
- enable_cpu_affinity: false
13
- machine_rank: 0
14
- main_training_function: main
15
- mixed_precision: fp16
16
- num_machines: 1
17
- num_processes: 1
18
- rdzv_backend: static
19
- same_network: true
20
- tpu_env: []
21
- tpu_use_cluster: false
22
- tpu_use_sudo: false
23
- use_cpu: false