Spaces:
Running
on
Zero
Running
on
Zero
v1
Browse files- meteor/arch/modeling_internlm2.py +198 -14
meteor/arch/modeling_internlm2.py
CHANGED
@@ -43,18 +43,18 @@ from .configuration_internlm2 import InternLM2Config
|
|
43 |
logger = logging.get_logger(__name__)
|
44 |
|
45 |
_CONFIG_FOR_DOC = 'InternLM2Config'
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
60 |
def _get_unpad_data(attention_mask):
|
@@ -492,12 +492,196 @@ class InternLM2Attention(nn.Module):
|
|
492 |
|
493 |
return attn_output, attn_weights, past_key_value
|
494 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
class InternLM2DecoderLayer(nn.Module):
|
496 |
|
497 |
def __init__(self, config: InternLM2Config):
|
498 |
super().__init__()
|
499 |
self.hidden_size = config.hidden_size
|
500 |
-
self.attention =
|
|
|
|
|
|
|
501 |
self.feed_forward = InternLM2MLP(config)
|
502 |
self.attention_norm = InternLM2RMSNorm(
|
503 |
config.hidden_size, eps=config.rms_norm_eps)
|
@@ -762,7 +946,7 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
762 |
|
763 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
764 |
|
765 |
-
|
766 |
|
767 |
# retrieve input_ids and inputs_embeds
|
768 |
if input_ids is not None and inputs_embeds is not None:
|
|
|
43 |
logger = logging.get_logger(__name__)
|
44 |
|
45 |
_CONFIG_FOR_DOC = 'InternLM2Config'
|
46 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
47 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
48 |
+
def _import_flash_attn():
|
49 |
+
global flash_attn_func, flash_attn_varlen_func
|
50 |
+
global pad_input, index_first_axis, unpad_input
|
51 |
+
try:
|
52 |
+
from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
|
53 |
+
from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
|
54 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
55 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
56 |
+
except ImportError:
|
57 |
+
raise ImportError("flash_attn is not installed.")
|
58 |
|
59 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
60 |
def _get_unpad_data(attention_mask):
|
|
|
492 |
|
493 |
return attn_output, attn_weights, past_key_value
|
494 |
|
495 |
+
|
496 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
497 |
+
"""InternLM2 flash attention module.
|
498 |
+
|
499 |
+
This module inherits from `InternLM2Attention` as the weights of the module
|
500 |
+
stays untouched. The only required change would be on the forward pass
|
501 |
+
where it needs to correctly call the public API of flash attention and deal
|
502 |
+
with padding tokens in case the input contains any of them.
|
503 |
+
"""
|
504 |
+
|
505 |
+
def forward(
|
506 |
+
self,
|
507 |
+
hidden_states: torch.Tensor,
|
508 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
509 |
+
position_ids: Optional[torch.LongTensor] = None,
|
510 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
511 |
+
output_attentions: bool = False,
|
512 |
+
use_cache: bool = False,
|
513 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
514 |
+
**kwargs,
|
515 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
516 |
+
Optional[Tuple[torch.Tensor]]]:
|
517 |
+
# InternLM2FlashAttention2 attention does not support output_attentions
|
518 |
+
if 'padding_mask' in kwargs:
|
519 |
+
warnings.warn(
|
520 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
521 |
+
'Please make sure use `attention_mask` instead.`')
|
522 |
+
|
523 |
+
# overwrite attention_mask with padding_mask
|
524 |
+
attention_mask = kwargs.pop('padding_mask')
|
525 |
+
|
526 |
+
output_attentions = False
|
527 |
+
|
528 |
+
bsz, q_len, _ = hidden_states.size()
|
529 |
+
|
530 |
+
qkv_states = self.wqkv(hidden_states, im_mask)
|
531 |
+
|
532 |
+
qkv_states = rearrange(
|
533 |
+
qkv_states,
|
534 |
+
'b q (h gs d) -> b q h gs d',
|
535 |
+
gs=2 + self.num_key_value_groups,
|
536 |
+
d=self.head_dim,
|
537 |
+
q=q_len,
|
538 |
+
)
|
539 |
+
|
540 |
+
query_states = qkv_states[..., :self.num_key_value_groups, :]
|
541 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
542 |
+
key_states = qkv_states[..., -2, :]
|
543 |
+
value_states = qkv_states[..., -1, :]
|
544 |
+
query_states = query_states.transpose(1, 2)
|
545 |
+
key_states = key_states.transpose(1, 2)
|
546 |
+
value_states = value_states.transpose(1, 2)
|
547 |
+
|
548 |
+
kv_seq_len = key_states.shape[-2]
|
549 |
+
if past_key_value is not None:
|
550 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
551 |
+
|
552 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
553 |
+
|
554 |
+
query_states, key_states = apply_rotary_pos_emb(
|
555 |
+
query_states, key_states, cos, sin, position_ids)
|
556 |
+
|
557 |
+
if past_key_value is not None:
|
558 |
+
# reuse k, v, self_attention
|
559 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
560 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
561 |
+
|
562 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
563 |
+
|
564 |
+
query_states = query_states.transpose(1, 2)
|
565 |
+
key_states = key_states.transpose(1, 2)
|
566 |
+
value_states = value_states.transpose(1, 2)
|
567 |
+
|
568 |
+
attn_output = self._flash_attention_forward(
|
569 |
+
query_states,
|
570 |
+
key_states,
|
571 |
+
value_states,
|
572 |
+
attention_mask,
|
573 |
+
q_len)
|
574 |
+
|
575 |
+
attn_output = attn_output.reshape(bsz, q_len,
|
576 |
+
self.hidden_size).contiguous()
|
577 |
+
attn_output = self.wo(attn_output, im_mask)
|
578 |
+
|
579 |
+
if not output_attentions:
|
580 |
+
attn_weights = None
|
581 |
+
|
582 |
+
return attn_output, attn_weights, past_key_value
|
583 |
+
|
584 |
+
def _flash_attention_forward(
|
585 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
586 |
+
):
|
587 |
+
"""
|
588 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
589 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
590 |
+
Args:
|
591 |
+
query_states (`torch.Tensor`):
|
592 |
+
Input query states to be passed to Flash Attention API
|
593 |
+
key_states (`torch.Tensor`):
|
594 |
+
Input key states to be passed to Flash Attention API
|
595 |
+
value_states (`torch.Tensor`):
|
596 |
+
Input value states to be passed to Flash Attention API
|
597 |
+
attention_mask (`torch.Tensor`):
|
598 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
599 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
600 |
+
dropout (`int`, *optional*):
|
601 |
+
Attention dropout
|
602 |
+
softmax_scale (`float`, *optional*):
|
603 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
604 |
+
"""
|
605 |
+
# Contains at least one padding token in the sequence
|
606 |
+
causal = self.is_causal and query_length != 1
|
607 |
+
if attention_mask is not None:
|
608 |
+
batch_size = query_states.shape[0]
|
609 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
610 |
+
query_states, key_states, value_states, attention_mask, query_length
|
611 |
+
)
|
612 |
+
|
613 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
614 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
615 |
+
|
616 |
+
attn_output_unpad = flash_attn_varlen_func(
|
617 |
+
query_states,
|
618 |
+
key_states,
|
619 |
+
value_states,
|
620 |
+
cu_seqlens_q=cu_seqlens_q,
|
621 |
+
cu_seqlens_k=cu_seqlens_k,
|
622 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
623 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
624 |
+
dropout_p=dropout,
|
625 |
+
softmax_scale=softmax_scale,
|
626 |
+
causal=causal,
|
627 |
+
)
|
628 |
+
|
629 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
630 |
+
else:
|
631 |
+
attn_output = flash_attn_func(
|
632 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
633 |
+
)
|
634 |
+
|
635 |
+
return attn_output
|
636 |
+
|
637 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
638 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
639 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
640 |
+
|
641 |
+
key_layer = index_first_axis(
|
642 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
643 |
+
)
|
644 |
+
value_layer = index_first_axis(
|
645 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
646 |
+
)
|
647 |
+
|
648 |
+
if query_length == kv_seq_len:
|
649 |
+
query_layer = index_first_axis(
|
650 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
651 |
+
)
|
652 |
+
cu_seqlens_q = cu_seqlens_k
|
653 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
654 |
+
indices_q = indices_k
|
655 |
+
elif query_length == 1:
|
656 |
+
max_seqlen_in_batch_q = 1
|
657 |
+
cu_seqlens_q = torch.arange(
|
658 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
659 |
+
) # There is a memcpy here, that is very bad.
|
660 |
+
indices_q = cu_seqlens_q[:-1]
|
661 |
+
query_layer = query_layer.squeeze(1)
|
662 |
+
else:
|
663 |
+
# The -q_len: slice assumes left padding.
|
664 |
+
attention_mask = attention_mask[:, -query_length:]
|
665 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
666 |
+
|
667 |
+
return (
|
668 |
+
query_layer,
|
669 |
+
key_layer,
|
670 |
+
value_layer,
|
671 |
+
indices_q.to(torch.int64),
|
672 |
+
(cu_seqlens_q, cu_seqlens_k),
|
673 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
674 |
+
)
|
675 |
+
|
676 |
class InternLM2DecoderLayer(nn.Module):
|
677 |
|
678 |
def __init__(self, config: InternLM2Config):
|
679 |
super().__init__()
|
680 |
self.hidden_size = config.hidden_size
|
681 |
+
self.attention = (
|
682 |
+
InternLM2Attention(config=config)
|
683 |
+
if not getattr(config, 'attn_implementation')=="flash_attention_2" else
|
684 |
+
InternLM2FlashAttention2(config=config))
|
685 |
self.feed_forward = InternLM2MLP(config)
|
686 |
self.attention_norm = InternLM2RMSNorm(
|
687 |
config.hidden_size, eps=config.rms_norm_eps)
|
|
|
946 |
|
947 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
948 |
|
949 |
+
if self.config.attn_implementation: _import_flash_attn()
|
950 |
|
951 |
# retrieve input_ids and inputs_embeds
|
952 |
if input_ids is not None and inputs_embeds is not None:
|