File size: 6,743 Bytes
6957169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gc
import torch

def memory_optimization():
    # memory deallocation
    gc.collect()

    # removing cache
    torch.cuda.empty_cache()

def freeze_model(model):
    for param in model.parameters():
        param.requires_grad=False

def find_special_token(string, special_token):
    start = 0
    while True:
        start = string.find(special_token, start)
        if start == -1: return
        yield start
        start += len(special_token) # use start += 1 to find overlapping matches

def insert_tor(sentence, tor_count):
    words = sentence.split()
    gap =  len(words) // (tor_count-1)

    # filtering
    if 0<=gap<=2:
        return False

    count = 0
    result = ""
    for i, word in enumerate(words):
        if 0<i<len(words)-1:
            result+=' '
        if i % gap == 0 and count != tor_count-1:
            result += '<tor>'
            count += 1
        result += word
    result = result + "<tor>"
    assert len(list(find_special_token(result, '<tor>'))) == tor_count
    return result

def add_bundle_tokens(input_string, special_token, num):

    # number of special tokens in input_string
    num_special_tokens = len(list(find_special_token(input_string, special_token)))

    # No special token -> return the raw
    if not num_special_tokens:
        return input_string
    
    result = ""
    index = 0
    while index < len(input_string):
        if input_string[index:index + len(special_token)] == special_token:
            result += special_token * num
            index += len(special_token)
        else:
            result += input_string[index]
            index += 1

    assert len(list(find_special_token(result, special_token))) == num_special_tokens * num
    return result

def make_instruction_for_mmamba(question, tor=None):
    
    if tor:
        qa_prompt = make_human_string(f"<s>[UNUSED_TOKEN_146]user\n{question}[UNUSED_TOKEN_145]",
                                    f"[UNUSED_TOKEN_146]rationale\n{tor}[UNUSED_TOKEN_145]\n</s>",
                                    split='\n')
    else:
        qa_prompt = make_human_string(f"<s>[UNUSED_TOKEN_146]user\n{question}[UNUSED_TOKEN_145]",
                                    f"[UNUSED_TOKEN_146]rationale\n"+"<tor>"*10+"[UNUSED_TOKEN_145]\n</s>",
                                    split='\n')
    return qa_prompt

def make_instruction_for_eval_meteor(question, dataset):
    system_prompt = "You should give helpful answer to user based on the rationale."
    
    if dataset != "mmmu" and dataset != "mathverse" and dataset != "hallusionbench" and dataset != "demo":
        question = "<image>" + question

    if dataset in ["sqa", "mmbench", "mmbench_cn", "mmbench_dev", "mmbench_cn_dev", "seed", "qbench", "ai2d", "mmstar"]:
        question = question + "\nAnswer with the option's letter from the given choices directly."

    elif dataset in ["vqav2", "gqa", "pope", "chartqa"]:
        question = question + "\nAnswer the question using a single word or phrase."

    elif dataset in ["vizwiz"]:
        question = question + "\nWhen the provided information is insufficient, respond with 'Unanswerable'. Answer the question using a single word or phrase."

    elif dataset in ["mmmu"]:
        if "A." in question:
            question = question + "\nAnswer with the option's letter from the given choices directly."
        else:
            question = question + "\nAnswer the question using a single word or phrase."
        
    elif dataset in ["hallusionbench"]:
        if "Please answer yes or no." not in question:
            question = question + "Please answer yes or no."

    qa_prompt = make_human_string("<s>"+"<tor>"*10+f"[UNUSED_TOKEN_146]system\n{system_prompt}[UNUSED_TOKEN_145]",
                                f"[UNUSED_TOKEN_146]user\n{question}[UNUSED_TOKEN_145]",
                                "[UNUSED_TOKEN_146]assistant\n",
                                split='\n')

    return qa_prompt


def make_human_string(*args, split):
    out = ''
    for i, arg in enumerate(args):
        out += arg
        if i != len(args)-1:
            out += split
    return out

def get_max_new_tokens(data_name):
    if data_name.lower() in ["mme", "pope", "sqa", "mmbench", "mmbench_cn", "mmbench_dev","mmbench_cn_dev", "seed", "qbench", "ai2d", "mmstar", "vqav2", "gqa", "chartqa", "hallusionbench", "textvqa", "mmmu"]:
        return 5
    if data_name.lower() in ["llava", "mm-vet"]:
        return 1024
    else:
        return 128

"""
Print Data Statistics
"""
def print_data_statistics(data):
    # name set
    name_set = {'caption',
                'instruction',
                'minigemini',
                'docdownstream',
                'docreason',
                'gllava',
                'mathvision',
                'mathinstruct',
                'mathplus'}
    caption = []
    instruction = []
    minigemini = []
    docdownstream = []
    docreason = []
    gllava = []
    mathvision = []
    mathinstruct = []
    mathplus = []
    for d in data:
        for name in name_set:
            if name in d['id']:
                eval(f'{name}.append(1)')
                break
    num_caption = sum(caption)
    num_instruction = sum(instruction)
    num_minigemini = sum(minigemini)
    num_docdownstream = sum(docdownstream)
    num_docreason = sum(docreason)
    num_gllava = sum(gllava)
    num_mathvision = sum(mathvision)
    num_mathinstruct = sum(mathinstruct)
    num_mathplus = sum(mathplus)

    total_len = num_caption + num_instruction + num_minigemini + \
    num_docdownstream + num_docreason + num_gllava + \
    num_mathvision +  num_mathinstruct + num_mathplus

    print('Meteor Dataset Structure Statistics')
    print(f'Total Length: {total_len}')
    print('--------------------------------------------')
    print(f'ShareGPT4V-Caption: {num_caption}')
    print(f'ShareGPT4V-Instruction: {num_instruction}')
    print(f'MiniGemini: {num_minigemini}')
    print(f'DocDownstream: {num_docdownstream}')
    print(f'DocReason: {num_docreason}')
    print(f'GLLaVA: {num_gllava}')
    print(f'MathVision: {num_mathvision}')
    print(f'MathInstruct: {num_mathinstruct}')
    print(f'MathPlus: {num_mathplus}')
    print('--------------------------------------------')
    print(f'Real-World Image: {num_caption + num_instruction}')
    print(f'Document & Chart & Diagram & Sign & Symbol: {num_minigemini + num_docdownstream + num_docreason}')
    print(f'Math: {num_gllava + num_mathvision + num_mathinstruct + num_mathplus}')
    print(f'     Math with Vision: {num_gllava + num_mathvision}')
    print(f'     Math with Text only: {num_mathinstruct + num_mathplus}')
    print('--------------------------------------------')
    print('')