File size: 8,649 Bytes
cd4c5a1
 
 
 
 
 
 
 
a7ad068
cd4c5a1
 
 
 
 
 
 
 
 
 
 
31f7743
 
 
 
cd4c5a1
 
 
 
 
 
41fc718
cd4c5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
beb4665
cd4c5a1
 
 
 
 
 
 
 
c36f753
cd4c5a1
 
71e2ad7
cd4c5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131d766
 
cd4c5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6608f5e
c36f753
cd4c5a1
 
 
 
c36f753
cd4c5a1
 
 
 
 
 
 
 
 
8c032e1
 
cd4c5a1
 
31f7743
 
8c032e1
 
41fc718
31f7743
cd4c5a1
 
b1c03f6
 
8c032e1
 
31f7743
 
cd4c5a1
 
 
 
8c032e1
 
31f7743
 
cd4c5a1
 
 
 
 
 
 
 
31f7743
cd4c5a1
838bbc8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
import numpy as np
import librosa
import requests
import torch
import torchaudio
import math
import os
import soundfile as sf
from glob import glob
from pytube import YouTube
from transformers import (
    Wav2Vec2CTCTokenizer,
    Wav2Vec2FeatureExtractor,
    Wav2Vec2Processor,
    Wav2Vec2ForCTC,
    TrainingArguments,
    Trainer,
    pipeline
)
processor = Wav2Vec2Processor.from_pretrained(
    "airesearch/wav2vec2-large-xlsr-53-th")
model = Wav2Vec2ForCTC.from_pretrained(
    "BALAKA/wav2vec2-large-xlsr-53-th-swear-words")

demo = gr.Blocks()


def check(sentence):
    found = []
    negative = ["กระดอ", "กระทิง", "กระสัน", "กระหรี่", "กรีด", "กวนส้นตีน", "กะหรี่", "กินขี้ปี้เยี่ยว", "ขายตัว", "ขี้", "ขโมย", "ข่มขืน", "ควย", "ควาย", "คอขาด", "ฆ่า", "ค่า", "จังไร", "จัญไร", "ฉิบหาย", "ฉี่", "ชั่ว", "ชาติหมา", "ชิงหมาเกิด", "ชิบหาย", "ช้างเย็ด", "ดาก", "ตอแหล", "ตัดหัว", "ตัดหำ", "ตาย", "ตีกัน", "ทรมาน", "ทาส", "ทุเรศ", "นรก", "บีบคอ", "ปากหมา", "ปี้กัน", "พ่อง", "พ่อมึง", "ฟัก", "ฟาย", "ยัดแม่", "ยิงกัน", "ระยำ", "ดอกทอง", "โสเภณี", "ล่อกัน", "ศพ", "สถุล", "สทุน", "สัด", "สันดาน", "สัส", "สาด", "ส้นตีน", "หน้าตัวเมืย", "ส้นตีน", "หมอย", "หรรม", "หัวแตก", "หำ", "หน้าหี", "น่าหี", "อนาจาร", "อัปปรี", "อีช้าง", "อีปลาวาฬ", "อีสัด", "อีหน้าหี", "อีหมา", "ห่า", "อับปรี", "เฆี่ยน", "เงี่ยน", "เจี๊ยว", "เชี่ย", "เด้า", "เผด็จการ", "เยี่ยว", "เย็ด", "เลือด", "เสือก", "เหล้า", "เหี้ย", "เอากัน", "แดก", "แตด", "แทง", "แม่ง", "แม่มึง", "แรด", "โคตร", "โง่", "โป๊", "โรคจิต", "ใจหมา", "ไอเข้", "ไอ้ขึ้หมา", "ไอ้บ้า", "ไอ้หมา", "เวร", "เวน", "ไอ้มืด", "ไอ้ดำ", "นิกก้า", "คนดำ", "นิโก", "บิช", "ดาก", "ปืน", "กระสุน", "โลลิ", ]
    negative = list(dict.fromkeys(negative))
    for i in negative:
        if sentence.find(i) != -1:
            found.append(i)
    return found


def resample(file_path):
    speech_array, sampling_rate = torchaudio.load(file_path)
    resampler = torchaudio.transforms.Resample(sampling_rate, 16000)
    return resampler(speech_array)[0].numpy()


def tran_script(file_path):
    if isinstance(file_path, str):
        speech = resample(file_path)
        inputs = processor(speech, sampling_rate=16_000,
                           return_tensors="pt", padding=True)
        logits = model(inputs.input_values).logits
        predicted_ids = torch.argmax(logits, dim=-1)
        predicted_sentence = processor.batch_decode(predicted_ids)
        return predicted_sentence
    else:
        now_path = glob('/home/user/app/split_*.mp3')
        sentence = []
        for i in range(file_path - 1):
            now_path = f'/home/user/app/split_{i+1}.mp3'
            speech = resample(now_path)
            inputs = processor(speech, sampling_rate=16_000,
                               return_tensors="pt", padding=True)
            logits = model(inputs.input_values).logits
            predicted_ids = torch.argmax(logits, dim=-1)
            predicted_sentence = processor.batch_decode(predicted_ids)
            sentence.append(predicted_sentence)
        return sentence


def split_file(file_path):
    speech, sample_rate = librosa.load(file_path)
    buffer = 5 * sample_rate
    samples_total = len(speech)
    samples_wrote = 0
    counter = 1

    while samples_wrote < samples_total:

        if buffer > (samples_total - samples_wrote):
            buffer = samples_total - samples_wrote

        block = speech[samples_wrote: (samples_wrote + buffer)]
        out_filename = "split_" + str(counter) + ".mp3"

        sf.write(out_filename, block, sample_rate)
        counter += 1
        samples_wrote += buffer
    return counter


def process(file_path):
    if librosa.get_duration(filename=file_path) <= 5:
        sentence = tran_script(file_path)
        sentence = str(sentence).replace(' ', '').strip("[]")
        return 'found at 0.00m 0.00m 0.00-0.05 seconds found ' + str(check(sentence))
    counter = split_file(file_path)
    sentence = tran_script(counter)
    result = ''
    for index, item in enumerate(sentence):
        now_sentence = item[0]
        now_sentence = str(item).replace(' ', '').strip("[]grt")
        now_sentence = check(now_sentence)
        if now_sentence:
            time = (index)*5
            minutes = math.floor(time / 60)
            hours = math.floor(minutes/60)
            seconds = time % 60
            minutes = str(minutes).zfill(2)
            hours = str(hours).zfill(2)
            fist_seconds = str(seconds).zfill(2)
            last_seconds = str(seconds+5).zfill(2)
            text = f'found at {hours}h {minutes}m {fist_seconds}-{last_seconds}seconds found {now_sentence}'
            result += text + '\n'
    return result


def youtube_loader(link):
    yt = YouTube(str(link))
    video = yt.streams.filter(only_audio=True).first()
    out_file = video.download(output_path='mp3')
    os.rename(out_file, '/home/user/app/mp3/youtube.mp3')
    return process('/home/user/app/mp3/youtube.mp3')


def twitch_loader(link):
    os.system(f"twitch-dl download -q audio_only {link} --output twitch.wav")
    return process('/home/user/app/twitch.wav')


with demo:
    gr.Markdown("Select your input type.")
    with gr.Tabs():
        with gr.TabItem("From your voice."):
            with gr.Row():
                voice = gr.Audio(source="microphone", type="filepath",
                                 optional=True, labe="Start record your voice here.")
                voice_output = gr.Textbox(labe="Your output is here.")
            text_button1 = gr.Button("Submit")
        with gr.TabItem("From your file."):
            with gr.Row():
                file_input = gr.Audio(
                    type="filepath", optional=True, labe="Drop your audio file here.")
                file_output = gr.Textbox(labe="Your output is here.")
            text_button4 = gr.Button("Submit")
            gr.Examples([["ex/ex1.mp3"], ["ex/ex2.mp3"]],
                        inputs=file_input, outputs=file_output, fn=process)
        with gr.TabItem("From youtube"):
            with gr.Row():
                youtube_input = gr.Textbox(
                    label="Insert your youtube link here.", placeholder='https://www.youtube.com/watch?v=dQw4w9WgXcQ')
                youtube_output = gr.Textbox(labe="Your output is here.")
            text_button2 = gr.Button("Submit")
            gr.Examples([["https://youtu.be/JwOJWFniWS8"], ["https://youtu.be/B8TvZyoucxM"]],
                        inputs=youtube_input, outputs=youtube_output, fn=youtube_loader)
        with gr.TabItem("From twitch"):
            with gr.Row():
                twitch_input = gr.Textbox(label="Insert your twitch link or ID here.",
                                          placeholder='https://www.twitch.tv/videos/1823056925 or 1823056925')
                twitch_output = gr.Textbox(labe="Your output is here.")
            text_button3 = gr.Button("Submit")
            gr.Examples([["https://www.twitch.tv/videos/1823056925"], ["https://www.twitch.tv/videos/1827185416"]],
                    inputs=twitch_input, outputs=twitch_output, fn=twitch_loader)

    text_button1.click(process, inputs=voice, outputs=voice_output)
    text_button2.click(youtube_loader, inputs=youtube_input,
                       outputs=youtube_output)
    text_button3.click(twitch_loader, inputs=twitch_input,
                       outputs=twitch_output)
    text_button4.click(process, inputs=file_input,
                       outputs=file_output)


demo.launch(enable_queue=True)