File size: 4,478 Bytes
8d14048
 
 
 
 
 
 
 
 
 
 
 
 
 
985e189
8d14048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
985e189
8d14048
 
 
 
 
 
 
 
 
 
 
200e6b9
8d14048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import imageio
import tempfile
import numpy as np
from PIL import Image
from typing import Union

import torch
import torchvision

from tqdm import tqdm
from einops import rearrange


def save_videos_as_images(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=2):
    dir_name = os.path.dirname(path)
    videos = rearrange(videos, "b c t h w -> t b h w c")

    os.makedirs(os.path.join(dir_name, "vis_images"), exist_ok=True)
    for frame_idx, x in enumerate(videos):
        if rescale:
            x = (x + 1.0) / 2.0
        x = (x * 255).numpy().astype(np.uint8)

        for batch_idx, image in enumerate(x):
            save_dir = os.path.join(dir_name, "vis_images", f"batch_{batch_idx}")
            os.makedirs(save_dir, exist_ok=True)
            save_path = os.path.join(save_dir, f"frame_{frame_idx}.png")
            image = Image.fromarray(image)
            image.save(save_path)


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=2):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=8)

    # save for gradio demo
    out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
    out_file.name = path.replace('.gif', '.mp4')
    writer = imageio.get_writer(out_file.name, fps=fps)
    for frame in outputs:
        writer.append_data(frame)
    writer.close()


@torch.no_grad()
def init_prompt(prompt, pipeline):
    uncond_input = pipeline.tokenizer(
        [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
        return_tensors="pt"
    )
    uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
    text_input = pipeline.tokenizer(
        [prompt],
        padding="max_length",
        max_length=pipeline.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
    context = torch.cat([uncond_embeddings, text_embeddings])

    return context


def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
              sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
    timestep, next_timestep = min(
        timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
    alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
    alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
    beta_prod_t = 1 - alpha_prod_t
    next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
    next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
    next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
    return next_sample


def get_noise_pred_single(latents, t, context, unet, normal_infer=False):
    bs = latents.shape[0]  # (b*f, c, h, w) or (b, c, f, h, w)
    if bs != context.shape[0]:
        context = context.repeat(bs, 1, 1)  # (b*f, len, dim)
    noise_pred = unet(latents, t, encoder_hidden_states=context, normal_infer=normal_infer)["sample"]
    return noise_pred


@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt, normal_infer=False):
    context = init_prompt(prompt, pipeline)
    uncond_embeddings, cond_embeddings = context.chunk(2)
    all_latent = [latent]
    latent = latent.clone().detach()
    for i in tqdm(range(num_inv_steps)):
        t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
        noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet, normal_infer=normal_infer)
        latent = next_step(noise_pred, t, latent, ddim_scheduler)
        all_latent.append(latent)
    return all_latent


@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt="", normal_infer=False):
    ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt, normal_infer=normal_infer)
    return ddim_latents