Spaces:
Runtime error
Runtime error
File size: 10,827 Bytes
8d14048 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import argparse
import datetime
import logging
import inspect
import math
import os
import warnings
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import diffusers
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from vid2vid_zero.models.unet_2d_condition import UNet2DConditionModel
from vid2vid_zero.data.dataset import VideoDataset
from vid2vid_zero.pipelines.pipeline_vid2vid_zero import Vid2VidZeroPipeline
from vid2vid_zero.util import save_videos_grid, save_videos_as_images, ddim_inversion
from einops import rearrange
from vid2vid_zero.p2p.p2p_stable import AttentionReplace, AttentionRefine
from vid2vid_zero.p2p.ptp_utils import register_attention_control
from vid2vid_zero.p2p.null_text_w_ptp import NullInversion
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__, log_level="INFO")
def prepare_control(unet, prompts, validation_data):
assert len(prompts) == 2
print(prompts[0])
print(prompts[1])
length1 = len(prompts[0].split(' '))
length2 = len(prompts[1].split(' '))
if length1 == length2:
# prepare for attn guidance
cross_replace_steps = 0.8
self_replace_steps = 0.4
controller = AttentionReplace(prompts, validation_data['num_inference_steps'],
cross_replace_steps=cross_replace_steps,
self_replace_steps=self_replace_steps)
else:
cross_replace_steps = 0.8
self_replace_steps = 0.4
controller = AttentionRefine(prompts, validation_data['num_inference_steps'],
cross_replace_steps=self_replace_steps,
self_replace_steps=self_replace_steps)
print(controller)
register_attention_control(unet, controller)
# the update of unet forward function is inplace
return cross_replace_steps, self_replace_steps
def main(
pretrained_model_path: str,
output_dir: str,
input_data: Dict,
validation_data: Dict,
input_batch_size: int = 1,
gradient_accumulation_steps: int = 1,
gradient_checkpointing: bool = True,
mixed_precision: Optional[str] = "fp16",
enable_xformers_memory_efficient_attention: bool = True,
seed: Optional[int] = None,
use_sc_attn: bool = True,
use_st_attn: bool = True,
st_attn_idx: int = 0,
fps: int = 1,
):
*_, config = inspect.getargvalues(inspect.currentframe())
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision=mixed_precision,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if seed is not None:
set_seed(seed)
# Handle the output folder creation
if accelerator.is_main_process:
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/sample", exist_ok=True)
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
# Load tokenizer and models.
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_path, subfolder="unet", use_sc_attn=use_sc_attn,
use_st_attn=use_st_attn, st_attn_idx=st_attn_idx)
# Freeze vae, text_encoder, and unet
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if gradient_checkpointing:
unet.enable_gradient_checkpointing()
# Get the training dataset
input_dataset = VideoDataset(**input_data)
# Preprocessing the dataset
input_dataset.prompt_ids = tokenizer(
input_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids[0]
# DataLoaders creation:
input_dataloader = torch.utils.data.DataLoader(
input_dataset, batch_size=input_batch_size
)
# Get the validation pipeline
validation_pipeline = Vid2VidZeroPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler"),
safety_checker=None, feature_extractor=None,
)
validation_pipeline.enable_vae_slicing()
ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps)
# Prepare everything with our `accelerator`.
unet, input_dataloader = accelerator.prepare(
unet, input_dataloader,
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(input_dataloader) / gradient_accumulation_steps)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("vid2vid-zero")
# Zero-shot Eval!
total_batch_size = input_batch_size * accelerator.num_processes * gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(input_dataset)}")
logger.info(f" Instantaneous batch size per device = {input_batch_size}")
logger.info(f" Total input batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
global_step = 0
unet.eval()
for step, batch in enumerate(input_dataloader):
samples = []
pixel_values = batch["pixel_values"].to(weight_dtype)
# save input video
video = (pixel_values / 2 + 0.5).clamp(0, 1).detach().cpu()
video = video.permute(0, 2, 1, 3, 4) # (b, f, c, h, w)
samples.append(video)
# start processing
video_length = pixel_values.shape[1]
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
latents = vae.encode(pixel_values).latent_dist.sample()
# take video as input
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
latents = latents * 0.18215
generator = torch.Generator(device="cuda")
generator.manual_seed(seed)
# perform inversion
ddim_inv_latent = None
if validation_data.use_null_inv:
null_inversion = NullInversion(
model=validation_pipeline, guidance_scale=validation_data.guidance_scale, null_inv_with_prompt=False,
null_normal_infer=validation_data.null_normal_infer,
)
ddim_inv_latent, uncond_embeddings = null_inversion.invert(
latents, input_dataset.prompt, verbose=True,
null_inner_steps=validation_data.null_inner_steps,
null_base_lr=validation_data.null_base_lr,
)
ddim_inv_latent = ddim_inv_latent.to(weight_dtype)
uncond_embeddings = [embed.to(weight_dtype) for embed in uncond_embeddings]
else:
ddim_inv_latent = ddim_inversion(
validation_pipeline, ddim_inv_scheduler, video_latent=latents,
num_inv_steps=validation_data.num_inv_steps, prompt="",
normal_infer=True, # we don't want to use scatn or denseattn for inversion, just use sd inferenece
)[-1].to(weight_dtype)
uncond_embeddings = None
ddim_inv_latent = ddim_inv_latent.repeat(2, 1, 1, 1, 1)
for idx, prompt in enumerate(validation_data.prompts):
prompts = [input_dataset.prompt, prompt] # a list of two prompts
cross_replace_steps, self_replace_steps = prepare_control(unet=unet, prompts=prompts, validation_data=validation_data)
sample = validation_pipeline(prompts, generator=generator, latents=ddim_inv_latent,
uncond_embeddings=uncond_embeddings,
**validation_data).images
assert sample.shape[0] == 2
sample_inv, sample_gen = sample.chunk(2)
# add input for vis
save_videos_grid(sample_gen, f"{output_dir}/sample/{prompts[1]}.gif", fps=fps)
samples.append(sample_gen)
samples = torch.concat(samples)
save_path = f"{output_dir}/sample-all.gif"
save_videos_grid(samples, save_path, fps=fps)
logger.info(f"Saved samples to {save_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/vid2vid_zero.yaml")
args = parser.parse_args()
main(**OmegaConf.load(args.config))
|