Azie88
app update
f9a5f05
import gradio as gr
import pandas as pd
import numpy as np
import joblib, os
script_dir = os.path.dirname(os.path.abspath(__file__))
pipeline_path = os.path.join(script_dir, 'toolkit', 'pipeline.joblib')
model_path = os.path.join(script_dir, 'toolkit', 'Random Forest Classifier.joblib')
# Load transformation pipeline and model
pipeline = joblib.load(pipeline_path)
model = joblib.load(model_path)
# Create a function to calculate TotalCharges
def calculate_total_charges(tenure, monthly_charges):
return tenure * monthly_charges
# Create a function that applies the ML pipeline and makes predictions
def predict(SeniorCitizen, Partner, Dependents, tenure,
InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport,
StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod,
MonthlyCharges):
# Calculate TotalCharges
TotalCharges = calculate_total_charges(tenure, MonthlyCharges)
# Create a dataframe with the input data
input_df = pd.DataFrame({
'SeniorCitizen': [SeniorCitizen],
'Partner': [Partner],
'Dependents': [Dependents],
'tenure': [tenure],
'InternetService': [InternetService],
'OnlineSecurity': [OnlineSecurity],
'OnlineBackup': [OnlineBackup],
'DeviceProtection': [DeviceProtection],
'TechSupport': [TechSupport],
'StreamingTV': [StreamingTV],
'StreamingMovies': [StreamingMovies],
'Contract': [Contract],
'PaperlessBilling': [PaperlessBilling],
'PaymentMethod': [PaymentMethod],
'MonthlyCharges': [MonthlyCharges],
'TotalCharges': [TotalCharges]
})
# Selecting categorical and numerical columns separately
cat_cols = [col for col in input_df.columns if input_df[col].dtype == 'object']
num_cols = [col for col in input_df.columns if input_df[col].dtype != 'object']
X_processed = pipeline.transform(input_df)
# Extracting feature names for categorical columns after one-hot encoding
cat_encoder = pipeline.named_steps['preprocessor'].named_transformers_['cat'].named_steps['onehot']
cat_feature_names = cat_encoder.get_feature_names_out(cat_cols)
# Concatenating numerical and categorical feature names
feature_names = num_cols + list(cat_feature_names)
# Convert X_processed to DataFrame
final_df = pd.DataFrame(X_processed, columns=feature_names)
# Extract the first three columns and remaining columns, then merge
first_three_columns = final_df.iloc[:, :3]
remaining_columns = final_df.iloc[:, 3:]
final_df = pd.concat([remaining_columns, first_three_columns], axis=1)
# Make predictions using the model
prediction_probs = model.predict_proba(final_df)[0]
prediction_label = {
"Prediction: CHURN πŸ”΄": prediction_probs[1],
"Prediction: STAY βœ…": prediction_probs[0]
}
return prediction_label
input_interface = []
with gr.Blocks(theme=gr.themes.Soft()) as app:
Title = gr.Label('Customer Churn Prediction App')
with gr.Row():
Title
with gr.Row():
gr.Markdown("This app predicts likelihood of a customer to leave or stay with the company")
with gr.Row():
with gr.Column():
input_interface_column_1 = [
gr.components.Radio(['Yes', 'No'], label="Are you a Seniorcitizen?"),
gr.components.Radio(['Yes', 'No'], label='Do you have Partner?'),
gr.components.Radio(['No', 'Yes'], label='Do you have any Dependents?'),
gr.components.Slider(label='Enter lenghth of Tenure in Months', minimum=1, maximum=73, step=1),
gr.components.Radio(['DSL', 'Fiber optic', 'No Internet'], label='What is your Internet Service?'),
gr.components.Radio(['No', 'Yes'], label='Do you have Online Security?'),
gr.components.Radio(['No', 'Yes'], label='Do you have Online Backup?'),
gr.components.Radio(['No', 'Yes'], label='Do you have Device Protection?')
]
with gr.Column():
input_interface_column_2 = [
gr.components.Radio(['No', 'Yes'], label='Do you have Tech Support?'),
gr.components.Radio(['No', 'Yes'], label='Do you have Streaming TV?'),
gr.components.Radio(['No', 'Yes'], label='Do you have Streaming Movies?'),
gr.components.Radio(['Month-to-month', 'One year', 'Two year'], label='What is your Contract Type?'),
gr.components.Radio(['Yes', 'No'], label='Do you prefer Paperless Billing?'),
gr.components.Radio(['Electronic check', 'Mailed check', 'Bank transfer (automatic)', 'Credit card (automatic)'], label='Which PaymentMethod do you prefer?'),
gr.components.Slider(label="Enter monthly charges", minimum=18.40, maximum=118.65)
]
with gr.Row():
input_interface.extend(input_interface_column_1)
input_interface.extend(input_interface_column_2)
with gr.Row():
predict_btn = gr.Button('Predict')
output_interface = gr.Label(label="churn")
with gr.Accordion("Open for information on inputs", open=False):
gr.Markdown("""This app receives the following as inputs and processes them to return the prediction on whether a customer, will churn or not.
- SeniorCitizen: Whether a customer is a senior citizen or not
- Partner: Whether the customer has a partner or not (Yes, No)
- Dependents: Whether the customer has dependents or not (Yes, No)
- Tenure: Number of months the customer has stayed with the company
- InternetService: Customer's internet service provider (DSL, Fiber Optic, No)
- OnlineSecurity: Whether the customer has online security or not (Yes, No, No Internet)
- OnlineBackup: Whether the customer has online backup or not (Yes, No, No Internet)
- DeviceProtection: Whether the customer has device protection or not (Yes, No, No internet service)
- TechSupport: Whether the customer has tech support or not (Yes, No, No internet)
- StreamingTV: Whether the customer has streaming TV or not (Yes, No, No internet service)
- StreamingMovies: Whether the customer has streaming movies or not (Yes, No, No Internet service)
- Contract: The contract term of the customer (Month-to-Month, One year, Two year)
- PaperlessBilling: Whether the customer has paperless billing or not (Yes, No)
- Payment Method: The customer's payment method (Electronic check, mailed check, Bank transfer(automatic), Credit card(automatic))
- MonthlyCharges: The amount charged to the customer monthly
""")
predict_btn.click(fn=predict, inputs=input_interface, outputs=output_interface)
app.launch(share=True)