import gradio as gr import cv2 import numpy as np from PIL import Image import base64 from io import BytesIO from models.image_text_transformation import ImageTextTransformation import argparse import torch parser = argparse.ArgumentParser() parser.add_argument('--gpt_version', choices=['gpt-3.5-turbo', 'gpt4'], default='gpt-3.5-turbo') parser.add_argument('--image_caption', action='store_true', dest='image_caption', default=True, help='Set this flag to True if you want to use BLIP2 Image Caption') parser.add_argument('--dense_caption', action='store_true', dest='dense_caption', default=True, help='Set this flag to True if you want to use Dense Caption') parser.add_argument('--semantic_segment', action='store_true', dest='semantic_segment', default=True, help='Set this flag to True if you want to use semantic segmentation') parser.add_argument('--sam_arch', choices=['vit_b', 'vit_l', 'vit_h'], dest='sam_arch', default='vit_b', help='vit_b is the default model (fast but not accurate), vit_l and vit_h are larger models') parser.add_argument('--captioner_base_model', choices=['blip', 'blip2'], dest='captioner_base_model', default='blip', help='blip2 requires 15G GPU memory, blip requires 6G GPU memory') parser.add_argument('--region_classify_model', choices=['ssa', 'edit_anything'], dest='region_classify_model', default='edit_anything', help='Select the region classification model: edit anything is ten times faster than ssa, but less accurate.') parser.add_argument('--image_caption_device', choices=['cuda', 'cpu'], default='cuda', help='Select the device: cuda or cpu, gpu memory larger than 14G is recommended') parser.add_argument('--dense_caption_device', choices=['cuda', 'cpu'], default='cuda', help='Select the device: cuda or cpu, < 6G GPU is not recommended>') parser.add_argument('--semantic_segment_device', choices=['cuda', 'cpu'], default='cuda', help='Select the device: cuda or cpu, gpu memory larger than 14G is recommended. Make sue this model and image_caption model on same device.') parser.add_argument('--contolnet_device', choices=['cuda', 'cpu'], default='cpu', help='Select the device: cuda or cpu, <6G GPU is not recommended>') args = parser.parse_args() device = "cuda" if torch.cuda.is_available() else "cpu" # device = "cpu" if device == "cuda": args.image_caption_device = "cpu" args.dense_caption_device = "cuda" args.semantic_segment_device = "cuda" args.contolnet_device = "cuda" else: args.image_caption_device = "cpu" args.dense_caption_device = "cpu" args.semantic_segment_device = "cpu" args.contolnet_device = "cpu" def pil_image_to_base64(image): buffered = BytesIO() image.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()).decode() return img_str def add_logo(): with open("examples/logo.png", "rb") as f: logo_base64 = base64.b64encode(f.read()).decode() return logo_base64 def process_image(image_src, options=None, processor=None): print(options) if options is None: options = [] processor.args.semantic_segment = "Semantic Segment" in options image_generation_status = "Image Generation" in options image_caption, dense_caption, region_semantic, gen_text = processor.image_to_text(image_src) if image_generation_status: gen_image = processor.text_to_image(gen_text) gen_image_str = pil_image_to_base64(gen_image) # Combine the outputs into a single HTML output custom_output = f'''

Image->Text:

Image Caption

{image_caption}

Dense Caption

{dense_caption}

Region Semantic

{region_semantic}

GPT4 Reasoning:

{gen_text}

''' if image_generation_status: custom_output += f'''

Text->Image:

Generated Image

''' return custom_output processor = ImageTextTransformation(args) # Create Gradio input and output components image_input = gr.inputs.Image(type='filepath', label="Input Image") semantic_segment_checkbox = gr.inputs.Checkbox(label="Semantic Segment", default=False) image_generation_checkbox = gr.inputs.Checkbox(label="Image Generation", default=False) extra_title = r'![vistors](https://visitor-badge.glitch.me/badge?page_id=fingerrec.Image2Paragraph)' + '\n' + \ r'[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-md-dark.svg)](https://huggingface.co/spaces/Awiny/Image2Paragraph?duplicate=true)' + '\n\n' logo_base64 = add_logo() # Create the title with the logo title_with_logo = \ f' Understanding Image with Text' examples = [ ["examples/test_4.jpg"], ] # Create Gradio interface interface = gr.Interface( fn=lambda image, options: process_image(image, options, processor), inputs=[image_input, gr.CheckboxGroup( label="Options", choices=["Image Generation", "Semantic Segment"], ), ], outputs=gr.outputs.HTML(), title=title_with_logo, examples=examples, description=extra_title +""" Image.txt. This code support image to text transformation. Then the generated text can do retrieval, question answering et al to conduct zero-shot. \n Github: https://github.com/showlab/Image2Paragraph \n Twitter: https://twitter.com/awinyimgprocess/status/1646225454599372800?s=46&t=HvOe9T2n35iFuCHP5aIHpQ \n Since GPU is expensive, we use CPU for demo and not include semantic segment anything. Run code local with gpu or google colab we provided for fast speed. \n Ttext2image model is controlnet ( very slow in cpu(~2m)), which used canny edge as reference. \n To speed up, we generate image with small size 384, run the code local for high-quality sample. """ ) # Launch the interface interface.launch()