import gradio as gr from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from transformers import AutoProcessor, AutoModelForTextToSpectrogram from datasets import load_dataset import torch import soundfile as sf import os # Load model directly processor = AutoProcessor.from_pretrained("Aumkeshchy2003/speecht5_finetuned_Aumkesh_English_tts") model = AutoModelForTextToSpectrogram.from_pretrained("Aumkeshchy2003/speecht5_finetuned_Aumkesh_English_tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Load xvector containing speaker's voice characteristics from a dataset embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Quantize the models def quantize_model(model): quantized_model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear}, dtype=torch.qint8 ) return quantized_model # Only quantize the vocoder, as the main model might not be compatible vocoder = quantize_model(vocoder) # Move models to GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) vocoder = vocoder.to(device) speaker_embeddings = speaker_embeddings.to(device) # Use inference mode for faster computation @torch.inference_mode() def text_to_speech(text): inputs = processor(text=text, return_tensors="pt").to(device) speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) speech = speech.cpu() # Move back to CPU for saving output_path = "output.wav" sf.write(output_path, speech.numpy(), samplerate=16000) return output_path # Create Gradio interface iface = gr.Interface( fn=text_to_speech, inputs=gr.Textbox(label="Enter the text"), outputs=gr.Audio(label="Generated Speech"), title="Text-to-Speech", description="Convert text to speech." ) # Launch the app iface.launch()