WavJourney / pipeline.py
Xubo-Liu's picture
Update pipeline.py
df77c26
raw
history blame
8.4 kB
import datetime
import os
from string import Template
import openai
import re
import glob
import pickle
import time
import json5
from retrying import retry
from code_generator import check_json_script, collect_and_check_audio_data
import random
import string
import utils
import voice_presets
from code_generator import AudioCodeGenerator
# Enable this for debugging
USE_OPENAI_CACHE = False
openai_cache = []
if USE_OPENAI_CACHE:
os.makedirs('cache', exist_ok=True)
for cache_file in glob.glob('cache/*.pkl'):
with open(cache_file, 'rb') as file:
openai_cache.append(pickle.load(file))
def chat_with_gpt(prompt, api_key):
if USE_OPENAI_CACHE:
filtered_object = list(filter(lambda x: x['prompt'] == prompt, openai_cache))
if len(filtered_object) > 0:
response = filtered_object[0]['response']
return response
try:
openai.api_key = api_key
chat = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
model="gpt-4",
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": prompt
}
]
)
finally:
openai.api_key = ''
if USE_OPENAI_CACHE:
cache_obj = {
'prompt': prompt,
'response': chat['choices'][0]['message']['content']
}
with open(f'cache/{time.time()}.pkl', 'wb') as _openai_cache:
pickle.dump(cache_obj, _openai_cache)
openai_cache.append(cache_obj)
return chat['choices'][0]['message']['content']
def get_file_content(filename):
with open(filename, 'r') as file:
return file.read().strip()
def write_to_file(filename, content):
with open(filename, 'w') as file:
file.write(content)
def extract_substring_with_quotes(input_string, quotes="'''"):
pattern = f"{quotes}(.*?){quotes}"
matches = re.findall(pattern, input_string, re.DOTALL)
return matches
def try_extract_content_from_quotes(content):
if "'''" in content:
return extract_substring_with_quotes(content)[0]
elif "```" in content:
return extract_substring_with_quotes(content, quotes="```")[0]
else:
return content
def maybe_get_content_from_file(content_or_filename):
if os.path.exists(content_or_filename):
with open(content_or_filename, 'r') as file:
return file.read().strip()
return content_or_filename
# Pipeline Interface Guidelines:
#
# Init calls:
# - Init calls must be called before running the actual steps
# - init_session() is called every time a gradio webpage is loaded
#
# Single Step:
# - takes input (file or content) and output path as input
# - most of time just returns output content
#
# Compositional Step:
# - takes session_id as input (you have session_id, you have all the paths)
# - run a series of steps
# This is called for every new gradio webpage
def init_session(session_id=''):
def uid8():
return ''.join(random.choices(string.ascii_lowercase + string.digits, k=8))
if session_id == '':
session_id = f'{datetime.datetime.now().strftime("%Y%m%d%H%M%S")}_{uid8()}'
# create the paths
os.makedirs(utils.get_session_voice_preset_path(session_id))
os.makedirs(utils.get_session_audio_path(session_id))
return session_id
@retry(stop_max_attempt_number=3)
def input_text_to_json_script_with_retry(complete_prompt_path, api_key):
print(" trying ...")
complete_prompt = get_file_content(complete_prompt_path)
json_response = try_extract_content_from_quotes(chat_with_gpt(complete_prompt, api_key))
json_data = json5.loads(json_response)
try:
check_json_script(json_data)
collect_and_check_audio_data(json_data)
except Exception as err:
print(f'JSON ERROR: {err}')
retry_complete_prompt = f'{complete_prompt}\n```\n{json_response}```\nThe script above has format error(s). Return the fixed script.\n\nScript:\n'
write_to_file(complete_prompt_path, retry_complete_prompt)
raise err
return json_response
# Step 1: input_text to json
def input_text_to_json_script(input_text, output_path, api_key):
print('Step 1: Writing audio script with LLM ...')
input_text = maybe_get_content_from_file(input_text)
text_to_audio_script_prompt = get_file_content('prompts/text_to_json.prompt')
prompt = f'{text_to_audio_script_prompt}\n\nInput text: {input_text}\n\nScript:\n'
complete_prompt_path = output_path / 'complete_input_text_to_audio_script.prompt'
write_to_file(complete_prompt_path, prompt)
audio_script_response = input_text_to_json_script_with_retry(complete_prompt_path, api_key)
generated_audio_script_filename = output_path / 'audio_script.json'
write_to_file(generated_audio_script_filename, audio_script_response)
return audio_script_response
# Step 2: json to char-voice map
def json_script_to_char_voice_map(json_script, voices, output_path, api_key):
print('Step 2: Parsing character voice with LLM...')
json_script_content = maybe_get_content_from_file(json_script)
prompt = get_file_content('prompts/audio_script_to_character_voice_map.prompt')
presets_str = '\n'.join(f"{preset['id']}: {preset['desc']}" for preset in voices.values())
prompt = Template(prompt).substitute(voice_and_desc=presets_str)
prompt = f"{prompt}\n\nAudio script:\n'''\n{json_script_content}\n'''\n\noutput:\n"
write_to_file(output_path / 'complete_audio_script_to_char_voice_map.prompt', prompt)
char_voice_map_response = try_extract_content_from_quotes(chat_with_gpt(prompt, api_key))
char_voice_map = json5.loads(char_voice_map_response)
# enrich char_voice_map with voice preset metadata
complete_char_voice_map = {c: voices[char_voice_map[c]] for c in char_voice_map}
char_voice_map_filename = output_path / 'character_voice_map.json'
write_to_file(char_voice_map_filename, json5.dumps(complete_char_voice_map))
return complete_char_voice_map
# Step 3: json to py code
def json_script_and_char_voice_map_to_audio_gen_code(json_script_filename, char_voice_map_filename, output_path, result_filename):
print('Step 3: Compiling audio script to Python program ...')
audio_code_generator = AudioCodeGenerator()
code = audio_code_generator.parse_and_generate(
json_script_filename,
char_voice_map_filename,
output_path,
result_filename
)
write_to_file(output_path / 'audio_generation.py', code)
# Step 4: py code to final wav
def audio_code_gen_to_result(audio_gen_code_path):
print('Step 4: Start running Python program ...')
audio_gen_code_filename = audio_gen_code_path / 'audio_generation.py'
os.system(f'python {audio_gen_code_filename}')
# Function call used by Gradio: input_text to json
def generate_json_file(session_id, input_text, api_key):
output_path = utils.get_session_path(session_id)
# Step 1
return input_text_to_json_script(input_text, output_path, api_key)
# Function call used by Gradio: json to result wav
def generate_audio(session_id, json_script, api_key):
output_path = utils.get_session_path(session_id)
output_audio_path = utils.get_session_audio_path(session_id)
voices = voice_presets.get_merged_voice_presets(session_id)
# Step 2
char_voice_map = json_script_to_char_voice_map(json_script, voices, output_path, api_key)
# Step 3
json_script_filename = output_path / 'audio_script.json'
char_voice_map_filename = output_path / 'character_voice_map.json'
result_wav_basename = f'res_{session_id}'
json_script_and_char_voice_map_to_audio_gen_code(json_script_filename, char_voice_map_filename, output_path, result_wav_basename)
# Step 4
audio_code_gen_to_result(output_path)
result_wav_filename = output_audio_path / f'{result_wav_basename}.wav'
print(f'Done all processes, result: {result_wav_filename}')
return result_wav_filename, char_voice_map
# Convenient function call used by wavjourney_cli
def full_steps(session_id, input_text, api_key):
json_script = generate_json_file(session_id, input_text, api_key)
return generate_audio(session_id, json_script, api_key)