|
from __future__ import annotations |
|
import gradio as gr |
|
import pathlib |
|
import sys |
|
sys.path.insert(0, 'vtoonify') |
|
|
|
from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2 |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import dlib |
|
import cv2 |
|
from model.vtoonify import VToonify |
|
from model.bisenet.model import BiSeNet |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
from model.encoder.align_all_parallel import align_face |
|
import gc |
|
import huggingface_hub |
|
import os |
|
|
|
MODEL_REPO = 'PKUWilliamYang/VToonify' |
|
|
|
class Model(): |
|
def __init__(self, device): |
|
super().__init__() |
|
|
|
self.device = device |
|
self.style_types = { |
|
'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26], |
|
'cartoon1-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 26], |
|
'cartoon2-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 64], |
|
'cartoon3-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 153], |
|
'cartoon4': ['vtoonify_d_cartoon/vtoonify_s299_d0.5.pt', 299], |
|
'cartoon4-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 299], |
|
'cartoon5-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 8], |
|
'comic1-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 28], |
|
'comic2-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 18], |
|
'arcane1': ['vtoonify_d_arcane/vtoonify_s000_d0.5.pt', 0], |
|
'arcane1-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 0], |
|
'arcane2': ['vtoonify_d_arcane/vtoonify_s077_d0.5.pt', 77], |
|
'arcane2-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 77], |
|
'caricature1': ['vtoonify_d_caricature/vtoonify_s039_d0.5.pt', 39], |
|
'caricature2': ['vtoonify_d_caricature/vtoonify_s068_d0.5.pt', 68], |
|
'pixar': ['vtoonify_d_pixar/vtoonify_s052_d0.5.pt', 52], |
|
'pixar-d': ['vtoonify_d_pixar/vtoonify_s_d.pt', 52], |
|
'illustration1-d': ['vtoonify_d_illustration/vtoonify_s054_d_c.pt', 54], |
|
'illustration2-d': ['vtoonify_d_illustration/vtoonify_s004_d_c.pt', 4], |
|
'illustration3-d': ['vtoonify_d_illustration/vtoonify_s009_d_c.pt', 9], |
|
'illustration4-d': ['vtoonify_d_illustration/vtoonify_s043_d_c.pt', 43], |
|
'illustration5-d': ['vtoonify_d_illustration/vtoonify_s086_d_c.pt', 86], |
|
} |
|
|
|
self.landmarkpredictor = self._create_dlib_landmark_model() |
|
self.parsingpredictor = self._create_parsing_model() |
|
self.pspencoder = self._load_encoder() |
|
self.transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]), |
|
]) |
|
|
|
self.vtoonify, self.exstyle = self._load_default_model() |
|
self.color_transfer = False |
|
self.style_name = 'cartoon1' |
|
self.video_limit_cpu = 100 |
|
self.video_limit_gpu = 300 |
|
|
|
@staticmethod |
|
def _create_dlib_landmark_model(): |
|
return dlib.shape_predictor(huggingface_hub.hf_hub_download(MODEL_REPO, |
|
'models/shape_predictor_68_face_landmarks.dat')) |
|
|
|
def _create_parsing_model(self): |
|
parsingpredictor = BiSeNet(n_classes=19) |
|
parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'), |
|
map_location=lambda storage, loc: storage)) |
|
parsingpredictor.to(self.device).eval() |
|
return parsingpredictor |
|
|
|
def _load_encoder(self) -> nn.Module: |
|
style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO,'models/encoder.pt') |
|
return load_psp_standalone(style_encoder_path, self.device) |
|
|
|
def _load_default_model(self) -> tuple[torch.Tensor, str]: |
|
vtoonify = VToonify(backbone = 'dualstylegan') |
|
vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, |
|
'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'), |
|
map_location=lambda storage, loc: storage)['g_ema']) |
|
vtoonify.to(self.device) |
|
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item() |
|
exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device) |
|
with torch.no_grad(): |
|
exstyle = vtoonify.zplus2wplus(exstyle) |
|
return vtoonify, exstyle |
|
|
|
def load_model(self, style_type: str) -> tuple[torch.Tensor, str]: |
|
if 'illustration' in style_type: |
|
self.color_transfer = True |
|
else: |
|
self.color_transfer = False |
|
if style_type not in self.style_types.keys(): |
|
return None, 'Oops, wrong Style Type. Please select a valid model.' |
|
self.style_name = style_type |
|
model_path, ind = self.style_types[style_type] |
|
style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy') |
|
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path), |
|
map_location=lambda storage, loc: storage)['g_ema']) |
|
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item() |
|
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device) |
|
with torch.no_grad(): |
|
exstyle = self.vtoonify.zplus2wplus(exstyle) |
|
return exstyle, 'Model of %s loaded.'%(style_type) |
|
|
|
def detect_and_align(self, frame, top, bottom, left, right, return_para=False): |
|
message = 'Error: no face detected! Please retry or change the photo.' |
|
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom]) |
|
instyle = None |
|
h, w, scale = 0, 0, 0 |
|
if paras is not None: |
|
h,w,top,bottom,left,right,scale = paras |
|
H, W = int(bottom-top), int(right-left) |
|
|
|
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]]) |
|
if scale <= 0.75: |
|
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) |
|
if scale <= 0.375: |
|
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) |
|
frame = cv2.resize(frame, (w, h))[top:bottom, left:right] |
|
with torch.no_grad(): |
|
I = align_face(frame, self.landmarkpredictor) |
|
if I is not None: |
|
I = self.transform(I).unsqueeze(dim=0).to(self.device) |
|
instyle = self.pspencoder(I) |
|
instyle = self.vtoonify.zplus2wplus(instyle) |
|
message = 'Successfully rescale the frame to (%d, %d)'%(bottom-top, right-left) |
|
else: |
|
frame = np.zeros((256,256,3), np.uint8) |
|
else: |
|
frame = np.zeros((256,256,3), np.uint8) |
|
if return_para: |
|
return frame, instyle, message, w, h, top, bottom, left, right, scale |
|
return frame, instyle, message |
|
|
|
|
|
def detect_and_align_image(self, frame_rgb: np.ndarray, top: int, bottom: int, left: int, right: int) -> tuple[np.ndarray, torch.Tensor, str]: |
|
if frame_rgb is None: |
|
return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load the image.' |
|
|
|
|
|
frame_bgr = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2BGR) |
|
|
|
return self.detect_and_align(frame_bgr, top, bottom, left, right) |
|
|
|
def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int |
|
) -> tuple[np.ndarray, torch.Tensor, str]: |
|
if video is None: |
|
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.' |
|
video_cap = cv2.VideoCapture(video) |
|
if video_cap.get(7) == 0: |
|
video_cap.release() |
|
return np.zeros((256,256,3), np.uint8), torch.zeros(1,18,512).to(self.device), 'Error: fail to load the video.' |
|
success, frame = video_cap.read() |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
video_cap.release() |
|
return self.detect_and_align(frame, top, bottom, left, right) |
|
|
|
def detect_and_align_full_video(self, video: str, top: int, bottom: int, left: int, right: int) -> tuple[str, torch.Tensor, str]: |
|
message = 'Error: no face detected! Please retry or change the video.' |
|
instyle = None |
|
if video is None: |
|
return 'default.mp4', instyle, 'Error: fail to load empty file.' |
|
video_cap = cv2.VideoCapture(video) |
|
if video_cap.get(7) == 0: |
|
video_cap.release() |
|
return 'default.mp4', instyle, 'Error: fail to load the video.' |
|
num = min(self.video_limit_gpu, int(video_cap.get(7))) |
|
if self.device == 'cpu': |
|
num = min(self.video_limit_cpu, num) |
|
success, frame = video_cap.read() |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
frame, instyle, message, w, h, top, bottom, left, right, scale = self.detect_and_align(frame, top, bottom, left, right, True) |
|
if instyle is None: |
|
return 'default.mp4', instyle, message |
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
videoWriter = cv2.VideoWriter('input.mp4', fourcc, video_cap.get(5), (int(right-left), int(bottom-top))) |
|
videoWriter.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)) |
|
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]]) |
|
for i in range(num-1): |
|
success, frame = video_cap.read() |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
if scale <= 0.75: |
|
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) |
|
if scale <= 0.375: |
|
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) |
|
frame = cv2.resize(frame, (w, h))[top:bottom, left:right] |
|
videoWriter.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)) |
|
|
|
videoWriter.release() |
|
video_cap.release() |
|
|
|
return 'input.mp4', instyle, 'Successfully rescale the video to (%d, %d)'%(bottom-top, right-left) |
|
|
|
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]: |
|
|
|
if instyle is None or aligned_face is None: |
|
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.' |
|
if self.style_name != style_type: |
|
exstyle, _ = self.load_model(style_type) |
|
if exstyle is None: |
|
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.' |
|
with torch.no_grad(): |
|
if self.color_transfer: |
|
s_w = exstyle |
|
else: |
|
s_w = instyle.clone() |
|
s_w[:,:7] = exstyle[:,:7] |
|
|
|
x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device) |
|
x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0], |
|
scale_factor=0.5, recompute_scale_factor=False).detach() |
|
inputs = torch.cat((x, x_p/16.), dim=1) |
|
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = style_degree) |
|
y_tilde = torch.clamp(y_tilde, -1, 1) |
|
print('*** Toonify %dx%d image with style of %s'%(y_tilde.shape[2], y_tilde.shape[3], style_type)) |
|
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name) |
|
|
|
def video_tooniy(self, aligned_video: str, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[str, str]: |
|
|
|
if aligned_video is None: |
|
return 'default.mp4', 'Opps, something wrong with the input. Please go to Step 2 and Rescale Video again.' |
|
video_cap = cv2.VideoCapture(aligned_video) |
|
if instyle is None or aligned_video is None or video_cap.get(7) == 0: |
|
video_cap.release() |
|
return 'default.mp4', 'Opps, something wrong with the input. Please go to Step 2 and Rescale Video again.' |
|
if self.style_name != style_type: |
|
exstyle, _ = self.load_model(style_type) |
|
if exstyle is None: |
|
return 'default.mp4', 'Opps, something wrong with the style type. Please go to Step 1 and load model again.' |
|
num = min(self.video_limit_gpu, int(video_cap.get(7))) |
|
if self.device == 'cpu': |
|
num = min(self.video_limit_cpu, num) |
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
videoWriter = cv2.VideoWriter('output.mp4', fourcc, |
|
video_cap.get(5), (int(video_cap.get(3)*4), |
|
int(video_cap.get(4)*4))) |
|
|
|
batch_frames = [] |
|
if video_cap.get(3) != 0: |
|
if self.device == 'cpu': |
|
batch_size = max(1, int(4 * 256* 256/ video_cap.get(3) / video_cap.get(4))) |
|
else: |
|
batch_size = min(max(1, int(4 * 400 * 360/ video_cap.get(3) / video_cap.get(4))), 4) |
|
else: |
|
batch_size = 1 |
|
print('*** Toonify using batch size of %d on %dx%d video of %d frames with style of %s'%(batch_size, int(video_cap.get(3)*4), int(video_cap.get(4)*4), num, style_type)) |
|
with torch.no_grad(): |
|
if self.color_transfer: |
|
s_w = exstyle |
|
else: |
|
s_w = instyle.clone() |
|
s_w[:,:7] = exstyle[:,:7] |
|
for i in range(num): |
|
success, frame = video_cap.read() |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
batch_frames += [self.transform(frame).unsqueeze(dim=0).to(self.device)] |
|
if len(batch_frames) == batch_size or (i+1) == num: |
|
x = torch.cat(batch_frames, dim=0) |
|
batch_frames = [] |
|
with torch.no_grad(): |
|
x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0], |
|
scale_factor=0.5, recompute_scale_factor=False).detach() |
|
inputs = torch.cat((x, x_p/16.), dim=1) |
|
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), style_degree) |
|
y_tilde = torch.clamp(y_tilde, -1, 1) |
|
for k in range(y_tilde.size(0)): |
|
videoWriter.write(tensor2cv2(y_tilde[k].cpu())) |
|
gc.collect() |
|
|
|
videoWriter.release() |
|
video_cap.release() |
|
return 'output.mp4', 'Successfully toonify video of %d frames with style of %s'%(num, self.style_name) |
|
|
|
|
|
|