Delete Kopie_von_⚡_AutoQuant.ipynb
Browse files- Kopie_von_⚡_AutoQuant.ipynb +0 -355
Kopie_von_⚡_AutoQuant.ipynb
DELETED
@@ -1,355 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": null,
|
6 |
-
"metadata": {
|
7 |
-
"cellView": "form",
|
8 |
-
"id": "fD24jJxq7t3k"
|
9 |
-
},
|
10 |
-
"outputs": [],
|
11 |
-
"source": [
|
12 |
-
"# @title # ⚡ AutoQuant\n",
|
13 |
-
"\n",
|
14 |
-
"# @markdown > 🗣️ [Large Language Model Course](https://github.com/mlabonne/llm-course)\n",
|
15 |
-
"\n",
|
16 |
-
"# @markdown ❤️ Created by [@maximelabonne](https://twitter.com/maximelabonne).\n",
|
17 |
-
"\n",
|
18 |
-
"# @markdown **Usage:** Download the model by **running this cell** and then run the cells corresponding to your quantization methods of interest.\n",
|
19 |
-
"\n",
|
20 |
-
"# @markdown To quantize a 7B model, GGUF only needs a T4 GPU, while the other methods require an A100 GPU.\n",
|
21 |
-
"\n",
|
22 |
-
"# @markdown *See also the [AutoQuantize](https://colab.research.google.com/drive/1Li3USnl3yoYctqJLtYux3LAIy4Bnnv3J) notebook from zainulabideen.*\n",
|
23 |
-
"\n",
|
24 |
-
"# @markdown ---\n",
|
25 |
-
"\n",
|
26 |
-
"# @markdown ## 🤗 Download model (required)\n",
|
27 |
-
"# @markdown `HF_TOKEN` corresponds to the name of the secret that stores your [Hugging Face access token](https://huggingface.co/settings/tokens) in Colab.\n",
|
28 |
-
"\n",
|
29 |
-
"MODEL_ID = \"mlabonne/Zebrafish-7B\" # @param {type:\"string\"}\n",
|
30 |
-
"USERNAME = \"Artples\" # @param {type:\"string\"}\n",
|
31 |
-
"HF_TOKEN = \"HF_TOKEN\" # @param {type:\"string\"}\n",
|
32 |
-
"\n",
|
33 |
-
"MODEL_NAME = MODEL_ID.split('/')[-1]\n",
|
34 |
-
"\n",
|
35 |
-
"# Download model\n",
|
36 |
-
"!git lfs install\n",
|
37 |
-
"!git clone https://huggingface.co/{MODEL_ID}\n",
|
38 |
-
"!pip install -q huggingface_hub\n",
|
39 |
-
"\n",
|
40 |
-
"from huggingface_hub import create_repo, HfApi, ModelCard\n",
|
41 |
-
"from google.colab import userdata, runtime\n",
|
42 |
-
"\n",
|
43 |
-
"# Defined in the secrets tab in Google Colab\n",
|
44 |
-
"hf_token = userdata.get(HF_TOKEN)\n",
|
45 |
-
"api = HfApi()"
|
46 |
-
]
|
47 |
-
},
|
48 |
-
{
|
49 |
-
"cell_type": "code",
|
50 |
-
"execution_count": null,
|
51 |
-
"metadata": {
|
52 |
-
"id": "NL0yGhbe3EFk"
|
53 |
-
},
|
54 |
-
"outputs": [],
|
55 |
-
"source": [
|
56 |
-
"# @title ## 🧩 GGUF\n",
|
57 |
-
"\n",
|
58 |
-
"# @markdown Quantization methods: `q2_k`, `q3_k_l`, `q3_k_m`, `q3_k_s`, `q4_0`, `q4_1`, `q4_k_m`, `q4_k_s`, `q5_0`, `q5_1`, `q5_k_m`, `q5_k_s`, `q6_k`, `q8_0`\n",
|
59 |
-
"\n",
|
60 |
-
"# @markdown Learn more about GGUF and quantization methods in [this article](https://mlabonne.github.io/blog/posts/Quantize_Llama_2_models_using_ggml.html).\n",
|
61 |
-
"\n",
|
62 |
-
"QUANTIZATION_FORMAT = \"q5_k_m\" # @param {type:\"string\"}\n",
|
63 |
-
"QUANTIZATION_METHODS = QUANTIZATION_FORMAT.replace(\" \", \"\").split(\",\")\n",
|
64 |
-
"\n",
|
65 |
-
"# Install llama.cpp\n",
|
66 |
-
"!git clone https://github.com/ggerganov/llama.cpp\n",
|
67 |
-
"!cd llama.cpp && git pull && make clean && LLAMA_CUBLAS=1 make\n",
|
68 |
-
"!pip install -r llama.cpp/requirements.txt\n",
|
69 |
-
"\n",
|
70 |
-
"# Convert to fp16\n",
|
71 |
-
"fp16 = f\"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin\"\n",
|
72 |
-
"!python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}\n",
|
73 |
-
"\n",
|
74 |
-
"# Quantize the model for each method in the QUANTIZATION_METHODS list\n",
|
75 |
-
"for method in QUANTIZATION_METHODS:\n",
|
76 |
-
" qtype = f\"{MODEL_NAME}/{MODEL_NAME.lower()}.{method.upper()}.gguf\"\n",
|
77 |
-
" !./llama.cpp/quantize {fp16} {qtype} {method}\n",
|
78 |
-
"\n",
|
79 |
-
"# Create model card\n",
|
80 |
-
"card = ModelCard.load(MODEL_ID)\n",
|
81 |
-
"card.data.tags.append(\"autoquant\")\n",
|
82 |
-
"card.data.tags.append(\"gguf\")\n",
|
83 |
-
"card.save(f'{MODEL_NAME}/README.md')\n",
|
84 |
-
"\n",
|
85 |
-
"# Upload model\n",
|
86 |
-
"create_repo(\n",
|
87 |
-
" repo_id = f\"{USERNAME}/{MODEL_NAME}-GGUF\",\n",
|
88 |
-
" repo_type=\"model\",\n",
|
89 |
-
" exist_ok=True,\n",
|
90 |
-
" token=hf_token\n",
|
91 |
-
")\n",
|
92 |
-
"api.upload_folder(\n",
|
93 |
-
" folder_path=MODEL_NAME,\n",
|
94 |
-
" repo_id=f\"{USERNAME}/{MODEL_NAME}-GGUF\",\n",
|
95 |
-
" allow_patterns=[\"*.gguf\",\"$.md\"],\n",
|
96 |
-
" token=hf_token\n",
|
97 |
-
")"
|
98 |
-
]
|
99 |
-
},
|
100 |
-
{
|
101 |
-
"cell_type": "code",
|
102 |
-
"execution_count": null,
|
103 |
-
"metadata": {
|
104 |
-
"cellView": "form",
|
105 |
-
"id": "OE_R3AXG5Y-F"
|
106 |
-
},
|
107 |
-
"outputs": [],
|
108 |
-
"source": [
|
109 |
-
"# @title ## 🧠 GPTQ\n",
|
110 |
-
"\n",
|
111 |
-
"# @markdown Learn more about the GPTQ algorithm in [this article](https://mlabonne.github.io/blog/posts/4_bit_Quantization_with_GPTQ.html).\n",
|
112 |
-
"\n",
|
113 |
-
"# !pip install auto-gptq optimum accelerate\n",
|
114 |
-
"\n",
|
115 |
-
"# from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig\n",
|
116 |
-
"\n",
|
117 |
-
"# BITS = 4 # @param {type:\"integer\"}\n",
|
118 |
-
"# GROUP_SIZE = 128 # @param {type:\"integer\"}\n",
|
119 |
-
"# DAMP_PERCENT = 0.1 # @param {type:\"number\"}\n",
|
120 |
-
"\n",
|
121 |
-
"# # Quantize model\n",
|
122 |
-
"# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)\n",
|
123 |
-
"# quantization_config = GPTQConfig(bits=BITS, dataset=\"c4\", tokenizer=tokenizer, damp_percent=DAMP_PERCENT)\n",
|
124 |
-
"# model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map=\"auto\", quantization_config=quantization_config, low_cpu_mem_usage=True)\n",
|
125 |
-
"\n",
|
126 |
-
"# Save model and tokenizer\n",
|
127 |
-
"save_folder = MODEL_ID + \"-GPTQ\"\n",
|
128 |
-
"model.save_pretrained(save_folder, use_safetensors=True)\n",
|
129 |
-
"tokenizer.save_pretrained(save_folder)\n",
|
130 |
-
"\n",
|
131 |
-
"# Create model card\n",
|
132 |
-
"card = ModelCard.load(MODEL_ID)\n",
|
133 |
-
"card.data.tags.append(\"autoquant\")\n",
|
134 |
-
"card.data.tags.append(\"gptq\")\n",
|
135 |
-
"card.save(f'{save_folder}/README.md')\n",
|
136 |
-
"\n",
|
137 |
-
"# Upload model\n",
|
138 |
-
"create_repo(\n",
|
139 |
-
" repo_id = f\"{USERNAME}/{MODEL_NAME}-GPTQ\",\n",
|
140 |
-
" repo_type=\"model\",\n",
|
141 |
-
" exist_ok=True,\n",
|
142 |
-
" token=hf_token\n",
|
143 |
-
")\n",
|
144 |
-
"api.upload_folder(\n",
|
145 |
-
" folder_path=save_folder,\n",
|
146 |
-
" repo_id=f\"{USERNAME}/{MODEL_NAME}-GPTQ\",\n",
|
147 |
-
" token=hf_token\n",
|
148 |
-
")"
|
149 |
-
]
|
150 |
-
},
|
151 |
-
{
|
152 |
-
"cell_type": "code",
|
153 |
-
"execution_count": null,
|
154 |
-
"metadata": {
|
155 |
-
"cellView": "form",
|
156 |
-
"id": "ZC9Nsr9u5WhN"
|
157 |
-
},
|
158 |
-
"outputs": [],
|
159 |
-
"source": [
|
160 |
-
"# @title # 🦙 ExLlamaV2\n",
|
161 |
-
"\n",
|
162 |
-
"# @markdown Learn more about ExLlamaV2 in [this article](https://mlabonne.github.io/blog/posts/ExLlamaV2_The_Fastest_Library_to_Run%C2%A0LLMs.html).\n",
|
163 |
-
"\n",
|
164 |
-
"BPW = 5.0 # @param {type:\"number\"}\n",
|
165 |
-
"\n",
|
166 |
-
"# Install ExLLamaV2\n",
|
167 |
-
"!git clone https://github.com/turboderp/exllamav2\n",
|
168 |
-
"!pip install -e exllamav2\n",
|
169 |
-
"!cp {MODEL_NAME} base_model\n",
|
170 |
-
"!rm base_mode/*.bin\n",
|
171 |
-
"\n",
|
172 |
-
"# Download dataset\n",
|
173 |
-
"!wget https://huggingface.co/datasets/wikitext/resolve/9a9e482b5987f9d25b3a9b2883fc6cc9fd8071b3/wikitext-103-v1/wikitext-test.parquet\n",
|
174 |
-
"\n",
|
175 |
-
"# Quantize model\n",
|
176 |
-
"save_folder = MODEL_ID + \"-EXL2\"\n",
|
177 |
-
"!mkdir {save_folder}\n",
|
178 |
-
"!python exllamav2/convert.py \\\n",
|
179 |
-
" -i base_model \\\n",
|
180 |
-
" -o {save_folder} \\\n",
|
181 |
-
" -c wikitext-test.parquet \\\n",
|
182 |
-
" -b {BPW}\n",
|
183 |
-
"\n",
|
184 |
-
"# Copy files\n",
|
185 |
-
"!rm -rf quant/out_tensor\n",
|
186 |
-
"!rsync -av --exclude='*.safetensors' --exclude='.*' ./base_model/ ./{save_folder}/\n",
|
187 |
-
"\n",
|
188 |
-
"# Create model card\n",
|
189 |
-
"card = ModelCard.load(MODEL_ID)\n",
|
190 |
-
"card.data.tags.append(\"autoquant\")\n",
|
191 |
-
"card.data.tags.append(\"exl2\")\n",
|
192 |
-
"card.save(f'{save_folder}/README.md')\n",
|
193 |
-
"\n",
|
194 |
-
"# Upload model\n",
|
195 |
-
"create_repo(\n",
|
196 |
-
" repo_id = f\"{USERNAME}/{MODEL_NAME}-{BPW:.1f}bpw-exl2\",\n",
|
197 |
-
" repo_type=\"model\",\n",
|
198 |
-
" exist_ok=True,\n",
|
199 |
-
" token=hf_token\n",
|
200 |
-
")\n",
|
201 |
-
"api.upload_folder(\n",
|
202 |
-
" folder_path=save_folder,\n",
|
203 |
-
" repo_id=f\"{USERNAME}/{MODEL_NAME}-{BPW:.1f}bpw-exl2\",\n",
|
204 |
-
" token=hf_token\n",
|
205 |
-
")"
|
206 |
-
]
|
207 |
-
},
|
208 |
-
{
|
209 |
-
"cell_type": "code",
|
210 |
-
"execution_count": null,
|
211 |
-
"metadata": {
|
212 |
-
"cellView": "form",
|
213 |
-
"id": "MyyUO2Fj3WHt"
|
214 |
-
},
|
215 |
-
"outputs": [],
|
216 |
-
"source": [
|
217 |
-
"# @title ## ⚖️ AWQ\n",
|
218 |
-
"\n",
|
219 |
-
"# @markdown See the [AutoAWQ repository](https://github.com/casper-hansen/AutoAWQ) for more information.\n",
|
220 |
-
"\n",
|
221 |
-
"# Install AutoAWQ\n",
|
222 |
-
"!pip install -qqq -U https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.4/autoawq-0.2.4+cu118-cp310-cp310-linux_x86_64.whl\n",
|
223 |
-
"!pip install zstandard\n",
|
224 |
-
"\n",
|
225 |
-
"from awq import AutoAWQForCausalLM\n",
|
226 |
-
"from transformers import AutoTokenizer\n",
|
227 |
-
"\n",
|
228 |
-
"BITS = 4 # @param {type: \"integer\"}\n",
|
229 |
-
"GROUP_SIZE = 128 # @param {type: \"integer\"}\n",
|
230 |
-
"VERSION = \"GEMM\" # @param {type: \"string\"}\n",
|
231 |
-
"ZERO_POINT = True # @param {type: \"boolean\"}\n",
|
232 |
-
"\n",
|
233 |
-
"quant_config = {\n",
|
234 |
-
" \"w_bit\": BITS,\n",
|
235 |
-
" \"q_group_size\": GROUP_SIZE,\n",
|
236 |
-
" \"version\": VERSION,\n",
|
237 |
-
" \"zero_point\": ZERO_POINT\n",
|
238 |
-
"}\n",
|
239 |
-
"save_folder = MODEL_NAME + \"-AWQ\"\n",
|
240 |
-
"\n",
|
241 |
-
"# Quantize model\n",
|
242 |
-
"model = AutoAWQForCausalLM.from_pretrained(MODEL_NAME, safetensors=True, low_cpu_mem_usage=True)\n",
|
243 |
-
"tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)\n",
|
244 |
-
"model.quantize(tokenizer, quant_config=quant_config)\n",
|
245 |
-
"\n",
|
246 |
-
"# Save model and tokenizer\n",
|
247 |
-
"model.save_quantized(save_folder)\n",
|
248 |
-
"tokenizer.save_pretrained(save_folder)\n",
|
249 |
-
"\n",
|
250 |
-
"# Create model card\n",
|
251 |
-
"card = ModelCard.load(MODEL_ID)\n",
|
252 |
-
"card.data.tags.append(\"autoquant\")\n",
|
253 |
-
"card.data.tags.append(\"awq\")\n",
|
254 |
-
"card.save(f'{save_folder}/README.md')\n",
|
255 |
-
"\n",
|
256 |
-
"# Upload model\n",
|
257 |
-
"create_repo(\n",
|
258 |
-
" repo_id = f\"{USERNAME}/{MODEL_NAME}-AWQ\",\n",
|
259 |
-
" repo_type=\"model\",\n",
|
260 |
-
" exist_ok=True,\n",
|
261 |
-
" token=hf_token\n",
|
262 |
-
")\n",
|
263 |
-
"api.upload_folder(\n",
|
264 |
-
" folder_path=save_folder,\n",
|
265 |
-
" repo_id=f\"{USERNAME}/{MODEL_NAME}-AWQ\",\n",
|
266 |
-
" token=hf_token\n",
|
267 |
-
")"
|
268 |
-
]
|
269 |
-
},
|
270 |
-
{
|
271 |
-
"cell_type": "code",
|
272 |
-
"execution_count": null,
|
273 |
-
"metadata": {
|
274 |
-
"cellView": "form",
|
275 |
-
"id": "iEhLsUjcnNR7"
|
276 |
-
},
|
277 |
-
"outputs": [],
|
278 |
-
"source": [
|
279 |
-
"# @title ## 🐘 HQQ\n",
|
280 |
-
"\n",
|
281 |
-
"# @markdown See the official [HQQ repository](https://github.com/mobiusml/hqq) for more information.\n",
|
282 |
-
"\n",
|
283 |
-
"!git clone https://github.com/mobiusml/hqq.git\n",
|
284 |
-
"!pip install -e hqq\n",
|
285 |
-
"!python hqq/kernels/setup_cuda.py install\n",
|
286 |
-
"!pip install flash-attn --no-build-isolation\n",
|
287 |
-
"!pip install transformers --upgrade\n",
|
288 |
-
"!num_threads=8; OMP_NUM_THREADS=$num_threads CUDA_VISIBLE_DEVICES=0\n",
|
289 |
-
"\n",
|
290 |
-
"import torch\n",
|
291 |
-
"from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer\n",
|
292 |
-
"from hqq.models.hf.base import AutoHQQHFModel\n",
|
293 |
-
"from hqq.core.quantize import *\n",
|
294 |
-
"\n",
|
295 |
-
"BITS = 2 # @param {type:\"integer\"}\n",
|
296 |
-
"GROUP_SIZE = 128 # @param {type:\"integer\"}\n",
|
297 |
-
"\n",
|
298 |
-
"# Quant config\n",
|
299 |
-
"quant_config = BaseQuantizeConfig(\n",
|
300 |
-
" nbits=BITS,\n",
|
301 |
-
" group_size=GROUP_SIZE\n",
|
302 |
-
")\n",
|
303 |
-
"\n",
|
304 |
-
"# Quantize model\n",
|
305 |
-
"model = HQQModelForCausalLM.from_pretrained(\n",
|
306 |
-
" MODEL_ID,\n",
|
307 |
-
" cache_dir=\".\",\n",
|
308 |
-
" attn_implementation=\"flash_attention_2\"\n",
|
309 |
-
")\n",
|
310 |
-
"tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)\n",
|
311 |
-
"model.quantize_model(quant_config=quant_config, device='cuda')\n",
|
312 |
-
"\n",
|
313 |
-
"# Save model and tokenizer\n",
|
314 |
-
"save_folder = MODEL_ID + \"-HQQ\"\n",
|
315 |
-
"model.save_quantized(save_folder)\n",
|
316 |
-
"tokenizer.save_pretrained(save_folder)\n",
|
317 |
-
"\n",
|
318 |
-
"# Create model card\n",
|
319 |
-
"card = ModelCard.load(MODEL_ID)\n",
|
320 |
-
"card.data.tags.append(\"autoquant\")\n",
|
321 |
-
"card.data.tags.append(\"hqq\")\n",
|
322 |
-
"card.save(f'{save_folder}/README.md')\n",
|
323 |
-
"\n",
|
324 |
-
"# Upload model\n",
|
325 |
-
"create_repo(\n",
|
326 |
-
" repo_id = f\"{USERNAME}/{MODEL_NAME}-{BITS}bit-HQQ\",\n",
|
327 |
-
" repo_type=\"model\",\n",
|
328 |
-
" exist_ok=True,\n",
|
329 |
-
" token=hf_token\n",
|
330 |
-
")\n",
|
331 |
-
"api.upload_folder(\n",
|
332 |
-
" folder_path=save_folder,\n",
|
333 |
-
" repo_id=f\"{USERNAME}/{MODEL_NAME}-{BITS}bit-HQQ\",\n",
|
334 |
-
" token=hf_token\n",
|
335 |
-
")"
|
336 |
-
]
|
337 |
-
}
|
338 |
-
],
|
339 |
-
"metadata": {
|
340 |
-
"accelerator": "GPU",
|
341 |
-
"colab": {
|
342 |
-
"gpuType": "T4",
|
343 |
-
"provenance": []
|
344 |
-
},
|
345 |
-
"kernelspec": {
|
346 |
-
"display_name": "Python 3",
|
347 |
-
"name": "python3"
|
348 |
-
},
|
349 |
-
"language_info": {
|
350 |
-
"name": "python"
|
351 |
-
}
|
352 |
-
},
|
353 |
-
"nbformat": 4,
|
354 |
-
"nbformat_minor": 0
|
355 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|