Spaces:
Running
Running
Upload 115 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- cashed_pickles/image_features_XTD_1000_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle +3 -0
- cashed_pickles/image_features_XTD_1000_images_arabert_siglib_best_model.pickle +3 -0
- cashed_pickles/text_features_XTD_1000_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle +3 -0
- cashed_pickles/text_features_XTD_1000_images_arabert_siglib_best_model.pickle +3 -0
- gradio_application/__pycache__/app.cpython-38.pyc +0 -0
- gradio_application/__pycache__/app.cpython-39.pyc +0 -0
- gradio_application/__pycache__/model_loading.cpython-38.pyc +0 -0
- gradio_application/__pycache__/model_loading.cpython-39.pyc +0 -0
- gradio_application/__pycache__/utils.cpython-38.pyc +0 -0
- gradio_application/__pycache__/utils.cpython-39.pyc +0 -0
- gradio_application/app.py +110 -0
- gradio_application/model_loading.py +51 -0
- gradio_application/utils.py +200 -0
- head_weights/arabertv2-vit-B-16-siglibheads_of_the_model_arabertv2-ViT-B-16-SigLIP-512-155_.pickle +3 -0
- photos/XTD10_dataset/COCO_train2014_000000061854.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000061877.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000061911.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000061945.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062160.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062209.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062226.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062257.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062293.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062301.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062387.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062557.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062591.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062740.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062745.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062756.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000062778.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000063035.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000063050.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000063109.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000063121.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000063230.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000064627.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000064697.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000064744.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000064765.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000064823.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000064836.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000064890.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000064962.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000065162.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000065213.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000065220.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000065420.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000065523.jpg +0 -0
- photos/XTD10_dataset/COCO_train2014_000000065836.jpg +0 -0
cashed_pickles/image_features_XTD_1000_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3986c84721b9f63ecbe86c4d9903327185865f560de8a5105f1909a5ffd54be
|
3 |
+
size 2560139
|
cashed_pickles/image_features_XTD_1000_images_arabert_siglib_best_model.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22ee1693fd39a670fbefba330b2ae171bd523429fccd4f6c0b5c9427a837f66a
|
3 |
+
size 3072139
|
cashed_pickles/text_features_XTD_1000_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1b0bfa2ea2c8bff9da1768012c80fda84465605d56d0dcdd7ac9f63fb23f503
|
3 |
+
size 2560139
|
cashed_pickles/text_features_XTD_1000_images_arabert_siglib_best_model.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd91f8e3579360094373b2874630da96d1ad29b8f7a3f81c616e3ad1ee09b969
|
3 |
+
size 3072139
|
gradio_application/__pycache__/app.cpython-38.pyc
ADDED
Binary file (2.46 kB). View file
|
|
gradio_application/__pycache__/app.cpython-39.pyc
ADDED
Binary file (2.74 kB). View file
|
|
gradio_application/__pycache__/model_loading.cpython-38.pyc
ADDED
Binary file (2.17 kB). View file
|
|
gradio_application/__pycache__/model_loading.cpython-39.pyc
ADDED
Binary file (2.51 kB). View file
|
|
gradio_application/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (7.21 kB). View file
|
|
gradio_application/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (7.34 kB). View file
|
|
gradio_application/app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import utils
|
3 |
+
|
4 |
+
|
5 |
+
# Araclip demo
|
6 |
+
with gr.Blocks() as demo_araclip:
|
7 |
+
|
8 |
+
gr.Markdown("## Input parameters")
|
9 |
+
|
10 |
+
txt = gr.Textbox(label="Text Query (Caption)")
|
11 |
+
num = gr.Slider(label="Number of retrieved image", value=1, minimum=1, maximum=1000)
|
12 |
+
|
13 |
+
|
14 |
+
with gr.Row():
|
15 |
+
btn = gr.Button("Retrieve images", scale=1)
|
16 |
+
|
17 |
+
gr.Markdown("## Retrieved Images")
|
18 |
+
|
19 |
+
gallery = gr.Gallery(
|
20 |
+
label="Generated images", show_label=True, elem_id="gallery"
|
21 |
+
, columns=[5], rows=[1], object_fit="contain", height="auto")
|
22 |
+
|
23 |
+
|
24 |
+
with gr.Row():
|
25 |
+
lables = gr.Label(label="Text image similarity")
|
26 |
+
|
27 |
+
with gr.Row():
|
28 |
+
|
29 |
+
with gr.Column(scale=1):
|
30 |
+
gr.Markdown("<div style='text-align: center; font-size: 24px; font-weight: bold;'>Data Retrieved based on Images Similarity</div>")
|
31 |
+
|
32 |
+
json_output = gr.JSON()
|
33 |
+
|
34 |
+
with gr.Column(scale=1):
|
35 |
+
# gr.Markdown("### Data Retrieved based on Text similarity")
|
36 |
+
# gr.Markdown("<div style='text-align: center;'> Data Retrieved based on Text similarity </div>")
|
37 |
+
gr.Markdown("<div style='text-align: center; font-size: 24px; font-weight: bold;'>Data Retrieved based on Text similarity</div>")
|
38 |
+
json_text = gr.JSON()
|
39 |
+
|
40 |
+
|
41 |
+
btn.click(utils.predict, inputs=[txt, num], outputs=[gallery,lables, json_output, json_text])
|
42 |
+
|
43 |
+
|
44 |
+
gr.Examples(
|
45 |
+
examples=[["تخطي لاعب فريق بيتسبرج بايرتس منطقة اللوحة الرئيسية في مباراة بدوري البيسبول", 5],
|
46 |
+
["وقوف قطة بمخالبها على فأرة حاسوب على المكتب", 10],
|
47 |
+
["صحن به شوربة صينية بالخضار، وإلى جانبه بطاطس مقلية وزجاجة ماء", 7]],
|
48 |
+
inputs=[txt, num],
|
49 |
+
outputs=[gallery,lables, json_output, json_text],
|
50 |
+
fn=utils.predict,
|
51 |
+
cache_examples=False,
|
52 |
+
)
|
53 |
+
|
54 |
+
# mclip demo
|
55 |
+
with gr.Blocks() as demo_mclip:
|
56 |
+
|
57 |
+
gr.Markdown("## Input parameters")
|
58 |
+
|
59 |
+
txt = gr.Textbox(label="Text Query (Caption)")
|
60 |
+
num = gr.Slider(label="Number of retrieved image", value=1, minimum=1, maximum=1000)
|
61 |
+
|
62 |
+
with gr.Row():
|
63 |
+
btn = gr.Button("Retrieve images", scale=1)
|
64 |
+
|
65 |
+
gr.Markdown("## Retrieved Images")
|
66 |
+
|
67 |
+
gallery = gr.Gallery(
|
68 |
+
label="Generated images", show_label=True, elem_id="gallery_mclip"
|
69 |
+
, columns=[5], rows=[1], object_fit="contain", height="auto")
|
70 |
+
|
71 |
+
|
72 |
+
lables = gr.Label()
|
73 |
+
|
74 |
+
with gr.Row():
|
75 |
+
|
76 |
+
with gr.Column(scale=1):
|
77 |
+
gr.Markdown("## Images Retrieved")
|
78 |
+
json_output = gr.JSON()
|
79 |
+
|
80 |
+
with gr.Column(scale=1):
|
81 |
+
gr.Markdown("## Text Retrieved")
|
82 |
+
json_text = gr.JSON()
|
83 |
+
|
84 |
+
btn.click(utils.predict_mclip, inputs=[txt, num], outputs=[gallery,lables, json_output, json_text])
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
gr.Examples(
|
90 |
+
examples=[["تخطي لاعب فريق بيتسبرج بايرتس منطقة اللوحة الرئيسية في مباراة بدوري البيسبول", 5],
|
91 |
+
["وقوف قطة بمخالبها على فأرة حاسوب على المكتب", 10],
|
92 |
+
["صحن به شوربة صينية بالخضار، وإلى جانبه بطاطس مقلية وزجاجة ماء", 7]],
|
93 |
+
inputs=[txt, num],
|
94 |
+
outputs=[gallery,lables, json_output, json_text],
|
95 |
+
fn=utils.predict_mclip,
|
96 |
+
cache_examples=False,
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
# Group the demos in a TabbedInterface
|
101 |
+
with gr.Blocks() as demo:
|
102 |
+
|
103 |
+
gr.Markdown("<font color=red size=10><center>AraClip: Arabic Image Retrieval Application</center></font>")
|
104 |
+
gr.TabbedInterface([demo_araclip, demo_mclip], ["Our Model", "Mclip model"])
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
if __name__ == "__main__":
|
109 |
+
|
110 |
+
demo.launch()
|
gradio_application/model_loading.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pickle
|
3 |
+
import torch
|
4 |
+
import transformers
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
|
8 |
+
# XLM model functions
|
9 |
+
import transformers
|
10 |
+
|
11 |
+
|
12 |
+
# Our model definition
|
13 |
+
|
14 |
+
class MultilingualClipEdited(torch.nn.Module):
|
15 |
+
def __init__(self, model_name, tokenizer_name, head_name, weights_dir='head_weights/', cache_dir=None,in_features=None,out_features=None):
|
16 |
+
super().__init__()
|
17 |
+
self.model_name = model_name
|
18 |
+
self.tokenizer_name = tokenizer_name
|
19 |
+
self.head_path = weights_dir + head_name
|
20 |
+
|
21 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_name, cache_dir=cache_dir)
|
22 |
+
self.transformer = transformers.AutoModel.from_pretrained(model_name, cache_dir=cache_dir)
|
23 |
+
self.clip_head = torch.nn.Linear(in_features=in_features, out_features=out_features)
|
24 |
+
self._load_head()
|
25 |
+
|
26 |
+
def forward(self, txt):
|
27 |
+
txt_tok = self.tokenizer(txt, padding=True, return_tensors='pt')
|
28 |
+
embs = self.transformer(**txt_tok)[0]
|
29 |
+
att = txt_tok['attention_mask']
|
30 |
+
embs = (embs * att.unsqueeze(2)).sum(dim=1) / att.sum(dim=1)[:, None]
|
31 |
+
return self.clip_head(embs)
|
32 |
+
|
33 |
+
def _load_head(self):
|
34 |
+
with open(self.head_path, 'rb') as f:
|
35 |
+
lin_weights = pickle.loads(f.read())
|
36 |
+
self.clip_head.weight = torch.nn.Parameter(torch.tensor(lin_weights[0]).float().t())
|
37 |
+
self.clip_head.bias = torch.nn.Parameter(torch.tensor(lin_weights[1]).float())
|
38 |
+
|
39 |
+
AVAILABLE_MODELS = {
|
40 |
+
'bert-base-arabertv2-ViT-B-16-SigLIP-512-epoch-155-trained-2M':{
|
41 |
+
'model_name': 'Arabic-Clip/bert-base-arabertv2-ViT-B-16-SigLIP-512-epoch-155-trained-2M',
|
42 |
+
'tokenizer_name': 'Arabic-Clip/bert-base-arabertv2-ViT-B-16-SigLIP-512-epoch-155-trained-2M',
|
43 |
+
'head_name': 'arabertv2-vit-B-16-siglibheads_of_the_model_arabertv2-ViT-B-16-SigLIP-512-155_.pickle'
|
44 |
+
},
|
45 |
+
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
def load_model(name, cache_dir=None,in_features=None,out_features=None):
|
50 |
+
config = AVAILABLE_MODELS[name]
|
51 |
+
return MultilingualClipEdited(**config, cache_dir=cache_dir, in_features= in_features, out_features=out_features)
|
gradio_application/utils.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
import torch
|
6 |
+
import transformers
|
7 |
+
from PIL import Image
|
8 |
+
from open_clip import create_model_from_pretrained, create_model_and_transforms
|
9 |
+
import json
|
10 |
+
|
11 |
+
# XLM model functions
|
12 |
+
from multilingual_clip import pt_multilingual_clip
|
13 |
+
|
14 |
+
from model_loading import load_model
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
class CustomDataSet(torch.utils.data.Dataset):
|
19 |
+
def __init__(self, main_dir, compose, image_name_list):
|
20 |
+
self.main_dir = main_dir
|
21 |
+
self.transform = compose
|
22 |
+
self.total_imgs = image_name_list
|
23 |
+
|
24 |
+
def __len__(self):
|
25 |
+
return len(self.total_imgs)
|
26 |
+
|
27 |
+
def get_image_name(self, idx):
|
28 |
+
|
29 |
+
return self.total_imgs[idx]
|
30 |
+
|
31 |
+
def __getitem__(self, idx):
|
32 |
+
img_loc = os.path.join(self.main_dir, self.total_imgs[idx])
|
33 |
+
image = Image.open(img_loc)
|
34 |
+
|
35 |
+
return self.transform(image)
|
36 |
+
|
37 |
+
|
38 |
+
def features_pickle(file_path=None):
|
39 |
+
|
40 |
+
with open(file_path, 'rb') as handle:
|
41 |
+
features_pickle = pickle.load(handle)
|
42 |
+
|
43 |
+
return features_pickle
|
44 |
+
|
45 |
+
|
46 |
+
def dataset_loading():
|
47 |
+
|
48 |
+
with open("photos/en_ar_XTD10_edited_v2.jsonl") as filino:
|
49 |
+
|
50 |
+
|
51 |
+
data = [json.loads(file_i) for file_i in filino]
|
52 |
+
|
53 |
+
sorted_data = sorted(data, key=lambda x: x['id'])
|
54 |
+
|
55 |
+
image_name_list = [lin["image_name"] for lin in sorted_data]
|
56 |
+
|
57 |
+
|
58 |
+
return sorted_data, image_name_list
|
59 |
+
|
60 |
+
|
61 |
+
def text_encoder(language_model, text):
|
62 |
+
"""Normalize the text embeddings"""
|
63 |
+
embedding = language_model(text)
|
64 |
+
norm_embedding = embedding / np.linalg.norm(embedding)
|
65 |
+
|
66 |
+
return embedding, norm_embedding
|
67 |
+
|
68 |
+
|
69 |
+
def compare_embeddings(logit_scale, img_embs, txt_embs):
|
70 |
+
|
71 |
+
image_features = img_embs / img_embs.norm(dim=-1, keepdim=True)
|
72 |
+
|
73 |
+
text_features = txt_embs / txt_embs.norm(dim=-1, keepdim=True)
|
74 |
+
|
75 |
+
logits_per_text = logit_scale * text_features @ image_features.t()
|
76 |
+
|
77 |
+
return logits_per_text
|
78 |
+
|
79 |
+
# Done
|
80 |
+
def compare_embeddings_text(full_text_embds, txt_embs):
|
81 |
+
|
82 |
+
full_text_embds_features = full_text_embds / full_text_embds.norm(dim=-1, keepdim=True)
|
83 |
+
|
84 |
+
text_features = txt_embs / txt_embs.norm(dim=-1, keepdim=True)
|
85 |
+
|
86 |
+
logits_per_text_full = text_features @ full_text_embds_features.t()
|
87 |
+
|
88 |
+
return logits_per_text_full
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
def find_image(language_model,clip_model, text_query, dataset, image_features, text_features_new,sorted_data, num=1):
|
93 |
+
|
94 |
+
embedding, _ = text_encoder(language_model, text_query)
|
95 |
+
|
96 |
+
logit_scale = clip_model.logit_scale.exp().float().to('cpu')
|
97 |
+
|
98 |
+
language_logits, text_logits = {}, {}
|
99 |
+
|
100 |
+
language_logits["Arabic"] = compare_embeddings(logit_scale, torch.from_numpy(image_features), torch.from_numpy(embedding))
|
101 |
+
|
102 |
+
text_logits["Arabic_text"] = compare_embeddings_text(torch.from_numpy(text_features_new), torch.from_numpy(embedding))
|
103 |
+
|
104 |
+
|
105 |
+
for _, txt_logits in language_logits.items():
|
106 |
+
|
107 |
+
probs = txt_logits.softmax(dim=-1).cpu().detach().numpy().T
|
108 |
+
|
109 |
+
file_paths = []
|
110 |
+
labels, json_data = {}, {}
|
111 |
+
|
112 |
+
for i in range(1, num+1):
|
113 |
+
idx = np.argsort(probs, axis=0)[-i, 0]
|
114 |
+
path = 'photos/XTD10_dataset/' + dataset.get_image_name(idx)
|
115 |
+
|
116 |
+
path_l = (path,f"{sorted_data[idx]['caption_ar']}")
|
117 |
+
|
118 |
+
labels[f" Image # {i}"] = probs[idx]
|
119 |
+
json_data[f" Image # {i}"] = sorted_data[idx]
|
120 |
+
|
121 |
+
file_paths.append(path_l)
|
122 |
+
|
123 |
+
|
124 |
+
json_text = {}
|
125 |
+
|
126 |
+
for _, txt_logits_full in text_logits.items():
|
127 |
+
|
128 |
+
probs_text = txt_logits_full.softmax(dim=-1).cpu().detach().numpy().T
|
129 |
+
|
130 |
+
for j in range(1, num+1):
|
131 |
+
|
132 |
+
idx = np.argsort(probs_text, axis=0)[-j, 0]
|
133 |
+
json_text[f" Text # {j}"] = sorted_data[idx]
|
134 |
+
|
135 |
+
return file_paths, labels, json_data, json_text
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
class AraClip():
|
140 |
+
def __init__(self):
|
141 |
+
|
142 |
+
self.text_model = load_model('bert-base-arabertv2-ViT-B-16-SigLIP-512-epoch-155-trained-2M', in_features= 768, out_features=768)
|
143 |
+
self.language_model = lambda queries: np.asarray(self.text_model(queries).detach().to('cpu'))
|
144 |
+
self.clip_model, self.compose = create_model_from_pretrained('hf-hub:timm/ViT-B-16-SigLIP-512')
|
145 |
+
self.sorted_data, self.image_name_list = dataset_loading()
|
146 |
+
|
147 |
+
def load_images(self):
|
148 |
+
# Return the features of the text and images
|
149 |
+
image_features_new = features_pickle('cashed_pickles/image_features_XTD_1000_images_arabert_siglib_best_model.pickle')
|
150 |
+
return image_features_new
|
151 |
+
|
152 |
+
def load_text(self):
|
153 |
+
text_features_new = features_pickle('cashed_pickles/text_features_XTD_1000_images_arabert_siglib_best_model.pickle')
|
154 |
+
return text_features_new
|
155 |
+
|
156 |
+
def load_dataset(self):
|
157 |
+
dataset = CustomDataSet("photos/XTD10_dataset", self.compose, self.image_name_list)
|
158 |
+
return dataset
|
159 |
+
|
160 |
+
|
161 |
+
araclip = AraClip()
|
162 |
+
|
163 |
+
def predict(text, num):
|
164 |
+
|
165 |
+
image_paths, labels, json_data, json_text = find_image(araclip.language_model,araclip.clip_model, text, araclip.load_dataset(), araclip.load_images() , araclip.load_text(), araclip.sorted_data, num=int(num))
|
166 |
+
|
167 |
+
return image_paths, labels, json_data, json_text
|
168 |
+
|
169 |
+
|
170 |
+
class Mclip():
|
171 |
+
def __init__(self) -> None:
|
172 |
+
|
173 |
+
|
174 |
+
self.tokenizer_mclip = transformers.AutoTokenizer.from_pretrained('M-CLIP/XLM-Roberta-Large-Vit-B-16Plus')
|
175 |
+
self.text_model_mclip = pt_multilingual_clip.MultilingualCLIP.from_pretrained('M-CLIP/XLM-Roberta-Large-Vit-B-16Plus')
|
176 |
+
self.language_model_mclip = lambda queries: np.asarray(self.text_model_mclip.forward(queries, self.tokenizer_mclip).detach().to('cpu'))
|
177 |
+
self.clip_model_mclip, _, self.compose_mclip = create_model_and_transforms('ViT-B-16-plus-240', pretrained="laion400m_e32")
|
178 |
+
self.sorted_data, self.image_name_list = dataset_loading()
|
179 |
+
|
180 |
+
def load_images(self):
|
181 |
+
# Return the features of the text and images
|
182 |
+
image_features_mclip = features_pickle('cashed_pickles/image_features_XTD_1000_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle')
|
183 |
+
return image_features_mclip
|
184 |
+
|
185 |
+
def load_text(self):
|
186 |
+
text_features_new_mclip = features_pickle('cashed_pickles/text_features_XTD_1000_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle')
|
187 |
+
return text_features_new_mclip
|
188 |
+
|
189 |
+
def load_dataset(self):
|
190 |
+
dataset_mclip = CustomDataSet("photos/XTD10_dataset", self.compose_mclip, self.image_name_list)
|
191 |
+
return dataset_mclip
|
192 |
+
|
193 |
+
|
194 |
+
mclip = Mclip()
|
195 |
+
|
196 |
+
def predict_mclip(text, num):
|
197 |
+
|
198 |
+
image_paths, labels, json_data, json_text = find_image(mclip.language_model_mclip,mclip.clip_model_mclip, text, mclip.load_dataset() , mclip.load_text() , mclip.load_text() , mclip.sorted_data , num=int(num))
|
199 |
+
|
200 |
+
return image_paths, labels, json_data, json_text
|
head_weights/arabertv2-vit-B-16-siglibheads_of_the_model_arabertv2-ViT-B-16-SigLIP-512-155_.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:360d4cf756dfc96ebbe9ccaf90f943e1d25a9ca7ca2e225cb7715893c5f62fbb
|
3 |
+
size 2362569
|
photos/XTD10_dataset/COCO_train2014_000000061854.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000061877.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000061911.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000061945.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062160.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062209.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062226.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062257.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062293.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062301.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062387.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062557.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062591.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062740.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062745.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062756.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000062778.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000063035.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000063050.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000063109.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000063121.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000063230.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000064627.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000064697.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000064744.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000064765.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000064823.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000064836.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000064890.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000064962.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000065162.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000065213.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000065220.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000065420.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000065523.jpg
ADDED
photos/XTD10_dataset/COCO_train2014_000000065836.jpg
ADDED