Spaces:
Running
Running
Evan Lesmez
commited on
Commit
•
ae2bbf3
1
Parent(s):
e68d711
Add rough draft of Gradio chatbot
Browse filesManual prompting to open ChatGPT interface based on history.
- chatbot/app.py +172 -0
chatbot/app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.chat_models import ChatOpenAI
|
3 |
+
from langchain.chains import ConversationChain
|
4 |
+
from langchain.memory import ConversationBufferMemory
|
5 |
+
|
6 |
+
from langchain.prompts.chat import (
|
7 |
+
HumanMessagePromptTemplate,
|
8 |
+
MessagesPlaceholder,
|
9 |
+
ChatPromptTemplate,
|
10 |
+
)
|
11 |
+
from engineer_prompt import init_prompt
|
12 |
+
|
13 |
+
# from transformers import (
|
14 |
+
# BlipProcessor,
|
15 |
+
# BlipForConditionalGeneration,
|
16 |
+
# BlipForQuestionAnswering,
|
17 |
+
# )
|
18 |
+
# import torch
|
19 |
+
# from PIL import Image
|
20 |
+
|
21 |
+
# class ImageCaptioning:
|
22 |
+
# def __init__(self, device):
|
23 |
+
# print(f"Initializing ImageCaptioning to {device}")
|
24 |
+
# self.device = device
|
25 |
+
# self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
|
26 |
+
# self.processor = BlipProcessor.from_pretrained(
|
27 |
+
# "Salesforce/blip-image-captioning-base"
|
28 |
+
# )
|
29 |
+
# self.model = BlipForConditionalGeneration.from_pretrained(
|
30 |
+
# "Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype
|
31 |
+
# ).to(self.device)
|
32 |
+
|
33 |
+
# def inference(self, image_path):
|
34 |
+
# inputs = self.processor(Image.open(image_path), return_tensors="pt").to(
|
35 |
+
# self.device, self.torch_dtype
|
36 |
+
# )
|
37 |
+
# out = self.model.generate(**inputs)
|
38 |
+
# captions = self.processor.decode(out[0], skip_special_tokens=True)
|
39 |
+
# print(
|
40 |
+
# f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}"
|
41 |
+
# )
|
42 |
+
# return captions
|
43 |
+
|
44 |
+
|
45 |
+
# class VisualQuestionAnswering:
|
46 |
+
# def __init__(self, device):
|
47 |
+
# print(f"Initializing VisualQuestionAnswering to {device}")
|
48 |
+
# self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
|
49 |
+
# self.device = device
|
50 |
+
# self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
51 |
+
# self.model = BlipForQuestionAnswering.from_pretrained(
|
52 |
+
# "Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype
|
53 |
+
# ).to(self.device)
|
54 |
+
|
55 |
+
# def inference(self, image_path, question):
|
56 |
+
# raw_image = Image.open(image_path).convert("RGB")
|
57 |
+
# inputs = self.processor(raw_image, question, return_tensors="pt").to(
|
58 |
+
# self.device, self.torch_dtype
|
59 |
+
# )
|
60 |
+
# out = self.model.generate(**inputs)
|
61 |
+
# answer = self.processor.decode(out[0], skip_special_tokens=True)
|
62 |
+
# print(
|
63 |
+
# f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
|
64 |
+
# f"Output Answer: {answer}"
|
65 |
+
# )
|
66 |
+
# return
|
67 |
+
|
68 |
+
|
69 |
+
class ConversationBot:
|
70 |
+
def __init__(
|
71 |
+
self,
|
72 |
+
):
|
73 |
+
self.chat = ChatOpenAI(temperature=1, verbose=True)
|
74 |
+
self.memory = ConversationBufferMemory(return_messages=True)
|
75 |
+
self.init_prompt_msgs = init_prompt.messages
|
76 |
+
self.ai_prompt_questions = {
|
77 |
+
"ingredients": self.init_prompt_msgs[1],
|
78 |
+
"allergies": self.init_prompt_msgs[3],
|
79 |
+
"recipe_open_params": self.init_prompt_msgs[5],
|
80 |
+
}
|
81 |
+
|
82 |
+
def respond(self, user_msg, chat_history):
|
83 |
+
response = self._get_bot_response(user_msg, chat_history)
|
84 |
+
chat_history.append((user_msg, response))
|
85 |
+
return "", chat_history
|
86 |
+
|
87 |
+
def init_conversation(self, formatted_chat_prompt):
|
88 |
+
self.conversation = ConversationChain(
|
89 |
+
llm=self.chat,
|
90 |
+
memory=self.memory,
|
91 |
+
prompt=formatted_chat_prompt,
|
92 |
+
verbose=True,
|
93 |
+
)
|
94 |
+
|
95 |
+
def reset(self):
|
96 |
+
self.memory.clear()
|
97 |
+
|
98 |
+
def _get_bot_response(self, user_msg: str, chat_history) -> str:
|
99 |
+
if len(chat_history) < 2:
|
100 |
+
return self.ai_prompt_questions["allergies"].prompt.template
|
101 |
+
|
102 |
+
if len(chat_history) < 3:
|
103 |
+
return self.ai_prompt_questions["recipe_open_params"].prompt.template
|
104 |
+
|
105 |
+
if len(chat_history) < 4:
|
106 |
+
user = 0
|
107 |
+
ai = 1
|
108 |
+
user_msgs = [msg_pair[user] for msg_pair in chat_history[1:]]
|
109 |
+
f_init_prompt = init_prompt.format_prompt(
|
110 |
+
ingredients=user_msgs[0],
|
111 |
+
allergies=user_msgs[1],
|
112 |
+
recipe_freeform_input=user_msg,
|
113 |
+
)
|
114 |
+
chat_msgs = f_init_prompt.to_messages()
|
115 |
+
results = self.chat.generate([chat_msgs])
|
116 |
+
chat_msgs.extend(
|
117 |
+
[
|
118 |
+
results.generations[0][0].message,
|
119 |
+
MessagesPlaceholder(variable_name="history"),
|
120 |
+
HumanMessagePromptTemplate.from_template("{input}"),
|
121 |
+
]
|
122 |
+
)
|
123 |
+
open_prompt = ChatPromptTemplate.from_messages(chat_msgs)
|
124 |
+
# prepare the open conversation chain from this point
|
125 |
+
self.init_conversation(open_prompt)
|
126 |
+
return results.generations[0][0].message.content
|
127 |
+
|
128 |
+
response = self.conversation.predict(input=user_msg)
|
129 |
+
return response
|
130 |
+
|
131 |
+
# def run_image(self, image, state, txt, lang):
|
132 |
+
# image_filename = os.path.join("image", f"{str(uuid.uuid4())[:8]}.png")
|
133 |
+
# print("======>Auto Resize Image...")
|
134 |
+
# img = Image.open(image.name)
|
135 |
+
# width, height = img.size
|
136 |
+
# ratio = min(512 / width, 512 / height)
|
137 |
+
# width_new, height_new = (round(width * ratio), round(height * ratio))
|
138 |
+
# width_new = int(np.round(width_new / 64.0)) * 64
|
139 |
+
# height_new = int(np.round(height_new / 64.0)) * 64
|
140 |
+
# img = img.resize((width_new, height_new))
|
141 |
+
# img = img.convert("RGB")
|
142 |
+
# img.save(image_filename, "PNG")
|
143 |
+
# print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
|
144 |
+
# description = self.models["ImageCaptioning"].inference(image_filename)
|
145 |
+
# Human_prompt = f'\nHuman: provide a figure named {image_filename}. The description is: {description}. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say "Received". \n'
|
146 |
+
# self.memory.buffer = (
|
147 |
+
# self.agent.memory.buffer + Human_prompt + "AI: " + AI_prompt
|
148 |
+
# )
|
149 |
+
# state = state + [(f"![](file={image_filename})*{image_filename}*", AI_prompt)]
|
150 |
+
# print(
|
151 |
+
# f"\nProcessed run_image, Input image: {image_filename}\nCurrent state: {state}\n"
|
152 |
+
# f"Current Memory: {self.agent.memory.buffer}"
|
153 |
+
# )
|
154 |
+
# return state, state, f"{txt} {image_filename} "
|
155 |
+
|
156 |
+
|
157 |
+
with gr.Blocks() as demo:
|
158 |
+
bot = ConversationBot()
|
159 |
+
chatbot = gr.Chatbot(
|
160 |
+
value=[(None, bot.ai_prompt_questions["ingredients"].prompt.template)]
|
161 |
+
)
|
162 |
+
|
163 |
+
msg = gr.Textbox()
|
164 |
+
clear = gr.Button("Clear")
|
165 |
+
|
166 |
+
msg.submit(
|
167 |
+
fn=bot.respond, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False
|
168 |
+
)
|
169 |
+
clear.click(lambda: None, None, chatbot, queue=False).then(bot.reset)
|
170 |
+
|
171 |
+
if __name__ == "__main__":
|
172 |
+
demo.launch()
|