Spaces:
Running
Running
Merge branch 'feat/chatbot' into 'master'
Browse filesSave rough draft of chatbot
See merge request animalequality/lv-recipe-chatbot!1
- .env.example +2 -0
- .gitignore +2 -0
- .vscode/settings.json +6 -0
- README.md +43 -0
- chatbot/__init__.py +3 -0
- chatbot/app.py +172 -0
- chatbot/engineer_prompt.py +105 -0
- poetry.lock +0 -0
- pyproject.toml +31 -0
- readme.md +0 -0
.env.example
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
OPENAI_API_KEY = "sk-*"
|
2 |
+
PROMPTLAYER_API_KEY = "pl_*"
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
*__pycache__
|
.vscode/settings.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[python]": {
|
3 |
+
"editor.defaultFormatter": "ms-python.black-formatter"
|
4 |
+
},
|
5 |
+
"python.formatting.provider": "none"
|
6 |
+
}
|
README.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Vegan Recipe Chatbot
|
2 |
+
|
3 |
+
![Screenshot of Chatbot initial interface](docs/assets/chatbot_init.png)
|
4 |
+
|
5 |
+
## Quickstart
|
6 |
+
|
7 |
+
`git clone` the repo
|
8 |
+
|
9 |
+
```sh
|
10 |
+
cd lv-recipe-chatbot
|
11 |
+
```
|
12 |
+
|
13 |
+
Install Python poetry for dependency management.
|
14 |
+
|
15 |
+
```sh
|
16 |
+
poetry install
|
17 |
+
```
|
18 |
+
|
19 |
+
Put API secrets in .env
|
20 |
+
|
21 |
+
```sh
|
22 |
+
cp .env.example .env
|
23 |
+
# edit .env with your secret key(s). Only OPEN_AI_KEY is required.
|
24 |
+
```
|
25 |
+
|
26 |
+
One option is to enter the poetry environment.
|
27 |
+
|
28 |
+
```sh
|
29 |
+
poetry shell
|
30 |
+
```
|
31 |
+
|
32 |
+
Then start the Gradio demo.
|
33 |
+
|
34 |
+
```sh
|
35 |
+
python app.py
|
36 |
+
```
|
37 |
+
|
38 |
+
## Useful links
|
39 |
+
|
40 |
+
* [Task Matrix (Formerly Visual ChatGPT)](https://github.com/microsoft/TaskMatrix)
|
41 |
+
* [LangChain](https://python.langchain.com/en/latest/index.html)
|
42 |
+
* [LLM Prompt Engineering](https://www.promptingguide.ai)
|
43 |
+
* [OpenAI best practices for prompts](https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api)
|
chatbot/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
|
3 |
+
load_dotenv()
|
chatbot/app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.chat_models import ChatOpenAI
|
3 |
+
from langchain.chains import ConversationChain
|
4 |
+
from langchain.memory import ConversationBufferMemory
|
5 |
+
|
6 |
+
from langchain.prompts.chat import (
|
7 |
+
HumanMessagePromptTemplate,
|
8 |
+
MessagesPlaceholder,
|
9 |
+
ChatPromptTemplate,
|
10 |
+
)
|
11 |
+
from chatbot.engineer_prompt import init_prompt
|
12 |
+
|
13 |
+
# from transformers import (
|
14 |
+
# BlipProcessor,
|
15 |
+
# BlipForConditionalGeneration,
|
16 |
+
# BlipForQuestionAnswering,
|
17 |
+
# )
|
18 |
+
# import torch
|
19 |
+
# from PIL import Image
|
20 |
+
|
21 |
+
# class ImageCaptioning:
|
22 |
+
# def __init__(self, device):
|
23 |
+
# print(f"Initializing ImageCaptioning to {device}")
|
24 |
+
# self.device = device
|
25 |
+
# self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
|
26 |
+
# self.processor = BlipProcessor.from_pretrained(
|
27 |
+
# "Salesforce/blip-image-captioning-base"
|
28 |
+
# )
|
29 |
+
# self.model = BlipForConditionalGeneration.from_pretrained(
|
30 |
+
# "Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype
|
31 |
+
# ).to(self.device)
|
32 |
+
|
33 |
+
# def inference(self, image_path):
|
34 |
+
# inputs = self.processor(Image.open(image_path), return_tensors="pt").to(
|
35 |
+
# self.device, self.torch_dtype
|
36 |
+
# )
|
37 |
+
# out = self.model.generate(**inputs)
|
38 |
+
# captions = self.processor.decode(out[0], skip_special_tokens=True)
|
39 |
+
# print(
|
40 |
+
# f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}"
|
41 |
+
# )
|
42 |
+
# return captions
|
43 |
+
|
44 |
+
|
45 |
+
# class VisualQuestionAnswering:
|
46 |
+
# def __init__(self, device):
|
47 |
+
# print(f"Initializing VisualQuestionAnswering to {device}")
|
48 |
+
# self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
|
49 |
+
# self.device = device
|
50 |
+
# self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
51 |
+
# self.model = BlipForQuestionAnswering.from_pretrained(
|
52 |
+
# "Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype
|
53 |
+
# ).to(self.device)
|
54 |
+
|
55 |
+
# def inference(self, image_path, question):
|
56 |
+
# raw_image = Image.open(image_path).convert("RGB")
|
57 |
+
# inputs = self.processor(raw_image, question, return_tensors="pt").to(
|
58 |
+
# self.device, self.torch_dtype
|
59 |
+
# )
|
60 |
+
# out = self.model.generate(**inputs)
|
61 |
+
# answer = self.processor.decode(out[0], skip_special_tokens=True)
|
62 |
+
# print(
|
63 |
+
# f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
|
64 |
+
# f"Output Answer: {answer}"
|
65 |
+
# )
|
66 |
+
# return
|
67 |
+
|
68 |
+
|
69 |
+
class ConversationBot:
|
70 |
+
def __init__(
|
71 |
+
self,
|
72 |
+
):
|
73 |
+
self.chat = ChatOpenAI(temperature=1, verbose=True)
|
74 |
+
self.memory = ConversationBufferMemory(return_messages=True)
|
75 |
+
self.init_prompt_msgs = init_prompt.messages
|
76 |
+
self.ai_prompt_questions = {
|
77 |
+
"ingredients": self.init_prompt_msgs[1],
|
78 |
+
"allergies": self.init_prompt_msgs[3],
|
79 |
+
"recipe_open_params": self.init_prompt_msgs[5],
|
80 |
+
}
|
81 |
+
|
82 |
+
def respond(self, user_msg, chat_history):
|
83 |
+
response = self._get_bot_response(user_msg, chat_history)
|
84 |
+
chat_history.append((user_msg, response))
|
85 |
+
return "", chat_history
|
86 |
+
|
87 |
+
def init_conversation(self, formatted_chat_prompt):
|
88 |
+
self.conversation = ConversationChain(
|
89 |
+
llm=self.chat,
|
90 |
+
memory=self.memory,
|
91 |
+
prompt=formatted_chat_prompt,
|
92 |
+
verbose=True,
|
93 |
+
)
|
94 |
+
|
95 |
+
def reset(self):
|
96 |
+
self.memory.clear()
|
97 |
+
|
98 |
+
def _get_bot_response(self, user_msg: str, chat_history) -> str:
|
99 |
+
if len(chat_history) < 2:
|
100 |
+
return self.ai_prompt_questions["allergies"].prompt.template
|
101 |
+
|
102 |
+
if len(chat_history) < 3:
|
103 |
+
return self.ai_prompt_questions["recipe_open_params"].prompt.template
|
104 |
+
|
105 |
+
if len(chat_history) < 4:
|
106 |
+
user = 0
|
107 |
+
ai = 1
|
108 |
+
user_msgs = [msg_pair[user] for msg_pair in chat_history[1:]]
|
109 |
+
f_init_prompt = init_prompt.format_prompt(
|
110 |
+
ingredients=user_msgs[0],
|
111 |
+
allergies=user_msgs[1],
|
112 |
+
recipe_freeform_input=user_msg,
|
113 |
+
)
|
114 |
+
chat_msgs = f_init_prompt.to_messages()
|
115 |
+
results = self.chat.generate([chat_msgs])
|
116 |
+
chat_msgs.extend(
|
117 |
+
[
|
118 |
+
results.generations[0][0].message,
|
119 |
+
MessagesPlaceholder(variable_name="history"),
|
120 |
+
HumanMessagePromptTemplate.from_template("{input}"),
|
121 |
+
]
|
122 |
+
)
|
123 |
+
open_prompt = ChatPromptTemplate.from_messages(chat_msgs)
|
124 |
+
# prepare the open conversation chain from this point
|
125 |
+
self.init_conversation(open_prompt)
|
126 |
+
return results.generations[0][0].message.content
|
127 |
+
|
128 |
+
response = self.conversation.predict(input=user_msg)
|
129 |
+
return response
|
130 |
+
|
131 |
+
# def run_image(self, image, state, txt, lang):
|
132 |
+
# image_filename = os.path.join("image", f"{str(uuid.uuid4())[:8]}.png")
|
133 |
+
# print("======>Auto Resize Image...")
|
134 |
+
# img = Image.open(image.name)
|
135 |
+
# width, height = img.size
|
136 |
+
# ratio = min(512 / width, 512 / height)
|
137 |
+
# width_new, height_new = (round(width * ratio), round(height * ratio))
|
138 |
+
# width_new = int(np.round(width_new / 64.0)) * 64
|
139 |
+
# height_new = int(np.round(height_new / 64.0)) * 64
|
140 |
+
# img = img.resize((width_new, height_new))
|
141 |
+
# img = img.convert("RGB")
|
142 |
+
# img.save(image_filename, "PNG")
|
143 |
+
# print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
|
144 |
+
# description = self.models["ImageCaptioning"].inference(image_filename)
|
145 |
+
# Human_prompt = f'\nHuman: provide a figure named {image_filename}. The description is: {description}. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say "Received". \n'
|
146 |
+
# self.memory.buffer = (
|
147 |
+
# self.agent.memory.buffer + Human_prompt + "AI: " + AI_prompt
|
148 |
+
# )
|
149 |
+
# state = state + [(f"![](file={image_filename})*{image_filename}*", AI_prompt)]
|
150 |
+
# print(
|
151 |
+
# f"\nProcessed run_image, Input image: {image_filename}\nCurrent state: {state}\n"
|
152 |
+
# f"Current Memory: {self.agent.memory.buffer}"
|
153 |
+
# )
|
154 |
+
# return state, state, f"{txt} {image_filename} "
|
155 |
+
|
156 |
+
|
157 |
+
with gr.Blocks() as demo:
|
158 |
+
bot = ConversationBot()
|
159 |
+
chatbot = gr.Chatbot(
|
160 |
+
value=[(None, bot.ai_prompt_questions["ingredients"].prompt.template)]
|
161 |
+
)
|
162 |
+
|
163 |
+
msg = gr.Textbox()
|
164 |
+
clear = gr.Button("Clear")
|
165 |
+
|
166 |
+
msg.submit(
|
167 |
+
fn=bot.respond, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False
|
168 |
+
)
|
169 |
+
clear.click(lambda: None, None, chatbot, queue=False).then(bot.reset)
|
170 |
+
|
171 |
+
if __name__ == "__main__":
|
172 |
+
demo.launch()
|
chatbot/engineer_prompt.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chat_models import PromptLayerChatOpenAI
|
2 |
+
from langchain.schema import HumanMessage, AIMessage, SystemMessage
|
3 |
+
from langchain.chains import ConversationChain
|
4 |
+
from langchain.memory import ConversationBufferMemory
|
5 |
+
from langchain.prompts.chat import (
|
6 |
+
ChatPromptTemplate,
|
7 |
+
SystemMessagePromptTemplate,
|
8 |
+
HumanMessagePromptTemplate,
|
9 |
+
AIMessagePromptTemplate,
|
10 |
+
MessagesPlaceholder,
|
11 |
+
)
|
12 |
+
|
13 |
+
# TODO Multiple chains sequenced?
|
14 |
+
# I think your way works fine, though you'd probably want to wrap it up in some initializer so you can "initialize" the chain via LLM calls. I'd probably use 2 chains and have a wrapping chain switch from the first to the second after initializing.
|
15 |
+
# https://discord.com/channels/1038097195422978059/1038097349660135474/1100533951136800828
|
16 |
+
|
17 |
+
init_prompt = ChatPromptTemplate.from_messages(
|
18 |
+
[
|
19 |
+
SystemMessagePromptTemplate.from_template(
|
20 |
+
"""
|
21 |
+
The following is a conversation between a human and a friendly AI chef.
|
22 |
+
The AI is compassionate to animals and only recommends vegan recipes based on the ingredients, allergies, and other preferences the human has.
|
23 |
+
|
24 |
+
Knowledge: A vegan diet implies a plant-based diet avoiding all animal foods such as meat (including fish, shellfish and insects), dairy, eggs and honey
|
25 |
+
|
26 |
+
Let's think step by step.
|
27 |
+
If the human messages are unrelated to vegan recipes, remind them of your purpose to recommend vegan recipes.
|
28 |
+
""".strip()
|
29 |
+
),
|
30 |
+
AIMessagePromptTemplate.from_template(
|
31 |
+
"What ingredients do you wish to cook with?"
|
32 |
+
),
|
33 |
+
HumanMessagePromptTemplate.from_template("Ingredients: {ingredients}"),
|
34 |
+
AIMessagePromptTemplate.from_template(
|
35 |
+
"Do you have any allergies I should be aware of?"
|
36 |
+
),
|
37 |
+
HumanMessagePromptTemplate.from_template("Allergies: {allergies}"),
|
38 |
+
AIMessagePromptTemplate.from_template(
|
39 |
+
"Do you have any preferences I should consider for the recipe such as preparation time, difficulty, or cuisine region?"
|
40 |
+
),
|
41 |
+
HumanMessagePromptTemplate.from_template(
|
42 |
+
"""
|
43 |
+
Give me a vegan recipe that includes at least a few of the ingredients provided (if any).
|
44 |
+
Respect the human's allergies (if any).
|
45 |
+
Follow these other preferences as closely as possible if they are inline with your purpose of recommending vegan recipes:
|
46 |
+
|
47 |
+
###
|
48 |
+
Preferences: {recipe_freeform_input}
|
49 |
+
###
|
50 |
+
|
51 |
+
Output format:
|
52 |
+
|
53 |
+
**Vegan recipe name**
|
54 |
+
Preparation time (humanized)
|
55 |
+
|
56 |
+
Ingredients (List of ingredients with quantities):
|
57 |
+
- <quantity and unit> <ingredient>
|
58 |
+
|
59 |
+
Steps (detailed):
|
60 |
+
1.
|
61 |
+
2.
|
62 |
+
3.
|
63 |
+
...
|
64 |
+
""".strip()
|
65 |
+
),
|
66 |
+
]
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
chat = PromptLayerChatOpenAI(
|
72 |
+
temperature=1, pl_tags=["langchain"], return_pl_id=True
|
73 |
+
)
|
74 |
+
memory = ConversationBufferMemory(return_messages=True)
|
75 |
+
chat_msgs = init_prompt.format_prompt(
|
76 |
+
ingredients="tofu, pickles, olives, tomatoes, lettuce, bell peppers, carrots, bread",
|
77 |
+
allergies="",
|
78 |
+
recipe_freeform_input="The preparation time should be less than 30 minutes. I really love Thai food!",
|
79 |
+
)
|
80 |
+
|
81 |
+
chat_msgs = chat_msgs.to_messages()
|
82 |
+
results = chat.generate([chat_msgs])
|
83 |
+
chat_msgs.extend(
|
84 |
+
[
|
85 |
+
results.generations[0][0].message,
|
86 |
+
MessagesPlaceholder(variable_name="history"),
|
87 |
+
HumanMessagePromptTemplate.from_template("{input}"),
|
88 |
+
]
|
89 |
+
)
|
90 |
+
open_prompt = ChatPromptTemplate.from_messages(chat_msgs)
|
91 |
+
conversation = ConversationChain(
|
92 |
+
llm=chat, verbose=True, memory=memory, prompt=open_prompt
|
93 |
+
)
|
94 |
+
|
95 |
+
result = conversation.predict(input="Recommend a different recipe please.")
|
96 |
+
print(result)
|
97 |
+
|
98 |
+
#! PL score example
|
99 |
+
# chat_results = chat.generate([[HumanMessage(content=prompt)]])
|
100 |
+
|
101 |
+
# for res in chat_results.generations:
|
102 |
+
# pl_request_id = res[0].generation_info["pl_request_id"]
|
103 |
+
# print(res[0].text)
|
104 |
+
# score = int(input("Enter a score from 0 to 100 for how the prompt performed: "))
|
105 |
+
# promptlayer.track.score(request_id=pl_request_id, score=score)
|
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "lv-recipe-chatbot"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Chatbot for recommending vegan recipes"
|
5 |
+
authors = ["Evan Lesmez <[email protected]>"]
|
6 |
+
readme = "README.md"
|
7 |
+
packages = [{ include = "chatbot" }]
|
8 |
+
|
9 |
+
[tool.poetry.dependencies]
|
10 |
+
python = "^3.8.1"
|
11 |
+
langchain = "^0.0.145"
|
12 |
+
openai = "^0.27.4"
|
13 |
+
gradio = "^3.27.0"
|
14 |
+
jupyterlab = "^3.6.3"
|
15 |
+
tqdm = "^4.65.0"
|
16 |
+
transformers = "^4.28.1"
|
17 |
+
promptlayer = "^0.1.80"
|
18 |
+
python-dotenv = "^1.0.0"
|
19 |
+
torch = "1.13.1"
|
20 |
+
torchvision = "0.14.1"
|
21 |
+
wget = "3.2"
|
22 |
+
|
23 |
+
[tool.poetry.group.dev.dependencies]
|
24 |
+
black = "^23.3.0"
|
25 |
+
pytest = "^7.3.1"
|
26 |
+
mypy = "^1.2.0"
|
27 |
+
|
28 |
+
|
29 |
+
[build-system]
|
30 |
+
requires = ["poetry-core"]
|
31 |
+
build-backend = "poetry.core.masonry.api"
|
readme.md
DELETED
File without changes
|