CogVideoX-5B-Space / utils.py
zR
init
1aceaa0
import math
from typing import Union, List
import torch
import os
from datetime import datetime
import numpy as np
import itertools
import PIL.Image
import safetensors.torch
import tqdm
import logging
from diffusers.utils import export_to_video
from spandrel import ModelLoader
logger = logging.getLogger(__file__)
def load_torch_file(ckpt, device=None, dtype=torch.float16):
if device is None:
device = torch.device("cpu")
if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
sd = safetensors.torch.load_file(ckpt, device=device.type)
else:
if not "weights_only" in torch.load.__code__.co_varnames:
logger.warning(
"Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely."
)
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
if "global_step" in pl_sd:
logger.debug(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
elif "params_ema" in pl_sd:
sd = pl_sd["params_ema"]
else:
sd = pl_sd
sd = {k: v.to(dtype) for k, v in sd.items()}
return sd
def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False):
if filter_keys:
out = {}
else:
out = state_dict
for rp in replace_prefix:
replace = list(
map(
lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp) :])),
filter(lambda a: a.startswith(rp), state_dict.keys()),
)
)
for x in replace:
w = state_dict.pop(x[0])
out[x[1]] = w
return out
def module_size(module):
module_mem = 0
sd = module.state_dict()
for k in sd:
t = sd[k]
module_mem += t.nelement() * t.element_size()
return module_mem
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
@torch.inference_mode()
def tiled_scale_multidim(
samples, function, tile=(64, 64), overlap=8, upscale_amount=4, out_channels=3, output_device="cpu", pbar=None
):
dims = len(tile)
print(f"samples dtype:{samples.dtype}")
output = torch.empty(
[samples.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), samples.shape[2:])),
device=output_device,
)
for b in range(samples.shape[0]):
s = samples[b : b + 1]
out = torch.zeros(
[s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])),
device=output_device,
)
out_div = torch.zeros(
[s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])),
device=output_device,
)
for it in itertools.product(*map(lambda a: range(0, a[0], a[1] - overlap), zip(s.shape[2:], tile))):
s_in = s
upscaled = []
for d in range(dims):
pos = max(0, min(s.shape[d + 2] - overlap, it[d]))
l = min(tile[d], s.shape[d + 2] - pos)
s_in = s_in.narrow(d + 2, pos, l)
upscaled.append(round(pos * upscale_amount))
ps = function(s_in).to(output_device)
mask = torch.ones_like(ps)
feather = round(overlap * upscale_amount)
for t in range(feather):
for d in range(2, dims + 2):
m = mask.narrow(d, t, 1)
m *= (1.0 / feather) * (t + 1)
m = mask.narrow(d, mask.shape[d] - 1 - t, 1)
m *= (1.0 / feather) * (t + 1)
o = out
o_d = out_div
for d in range(dims):
o = o.narrow(d + 2, upscaled[d], mask.shape[d + 2])
o_d = o_d.narrow(d + 2, upscaled[d], mask.shape[d + 2])
o += ps * mask
o_d += mask
if pbar is not None:
pbar.update(1)
output[b : b + 1] = out / out_div
return output
def tiled_scale(
samples,
function,
tile_x=64,
tile_y=64,
overlap=8,
upscale_amount=4,
out_channels=3,
output_device="cpu",
pbar=None,
):
return tiled_scale_multidim(
samples, function, (tile_y, tile_x), overlap, upscale_amount, out_channels, output_device, pbar
)
def load_sd_upscale(ckpt, inf_device):
sd = load_torch_file(ckpt, device=inf_device)
if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
sd = state_dict_prefix_replace(sd, {"module.": ""})
out = ModelLoader().load_from_state_dict(sd).half()
return out
def upscale(upscale_model, tensor: torch.Tensor, inf_device, output_device="cpu") -> torch.Tensor:
memory_required = module_size(upscale_model.model)
memory_required += (
(512 * 512 * 3) * tensor.element_size() * max(upscale_model.scale, 1.0) * 384.0
) # The 384.0 is an estimate of how much some of these models take, TODO: make it more accurate
memory_required += tensor.nelement() * tensor.element_size()
print(f"UPScaleMemory required: {memory_required / 1024 / 1024 / 1024} GB")
upscale_model.to(inf_device)
tile = 512
overlap = 32
steps = tensor.shape[0] * get_tiled_scale_steps(
tensor.shape[3], tensor.shape[2], tile_x=tile, tile_y=tile, overlap=overlap
)
pbar = ProgressBar(steps, desc="Tiling and Upscaling")
s = tiled_scale(
samples=tensor.to(torch.float16),
function=lambda a: upscale_model(a),
tile_x=tile,
tile_y=tile,
overlap=overlap,
upscale_amount=upscale_model.scale,
pbar=pbar,
)
upscale_model.to(output_device)
return s
def upscale_batch_and_concatenate(upscale_model, latents, inf_device, output_device="cpu") -> torch.Tensor:
upscaled_latents = []
for i in range(latents.size(0)):
latent = latents[i]
upscaled_latent = upscale(upscale_model, latent, inf_device, output_device)
upscaled_latents.append(upscaled_latent)
return torch.stack(upscaled_latents)
def save_video(tensor: Union[List[np.ndarray], List[PIL.Image.Image]], fps: int = 8):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
video_path = f"./output/{timestamp}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
export_to_video(tensor, video_path, fps=fps)
return video_path
class ProgressBar:
def __init__(self, total, desc=None):
self.total = total
self.current = 0
self.b_unit = tqdm.tqdm(total=total, desc="ProgressBar context index: 0" if desc is None else desc)
def update(self, value):
if value > self.total:
value = self.total
self.current = value
if self.b_unit is not None:
self.b_unit.set_description("ProgressBar context index: {}".format(self.current))
self.b_unit.refresh()
# 更新进度
self.b_unit.update(self.current)