Lumina-Next-T2I / app.py
PommesPeter's picture
Update app.py
cc5ce56 verified
raw
history blame
22.6 kB
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
subprocess.run("mkdir -p ./checkpoints", shell=True)
subprocess.run("huggingface-cli download --resume-download Alpha-VLLM/Lumina-Next-T2I --local-dir ./checkpoints --local-dir-use-symlinks False", shell=True)
import argparse
import builtins
import json
import threading
import random
import socket
import spaces
import traceback
import os
from queue import Queue
import fairscale.nn.model_parallel.initialize as fs_init
import gradio as gr
import numpy as np
import torch
import torch.distributed as dist
from torchvision.transforms.functional import to_pil_image
from PIL import Image
from threading import Thread
import models
from lumina_t2i.transport import create_transport, Sampler
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
description = """
# Lumina Next Text-to-Image
Lumina-Next-T2I is a 2B Next-DiT model with 2B text encoder.
Demo current model: `Lumina-Next-T2I`
"""
hf_token = os.environ['HF_TOKEN']
examples = [
["👽🤖👹👻"],
["孤舟蓑笠翁"],
["两只黄鹂鸣翠柳"],
["大漠孤烟直,长河落日圆"],
["秋风起兮白云飞,草木黄落兮雁南归"],
["도쿄 타워, 최고 품질의 우키요에, 에도 시대"],
["味噌ラーメン, 最高品質の浮世絵、江戸時代。"],
["東京タワー、最高品質の浮世絵、江戸時代。"],
["Astronaut on Mars During sunset"],
["Tour de Tokyo, estampes ukiyo-e de la plus haute qualité, période Edo"],
["🐔 playing 🏀"],
["☃️ with 🌹 in the ❄️"],
["🐶 wearing 😎 flying on 🌈 "],
["A small 🍎 and 🍊 with 😁 emoji in the Sahara desert"],
["Токийская башня, лучшие укиё-э, период Эдо"],
["Tokio-Turm, hochwertigste Ukiyo-e, Edo-Zeit"],
["A scared cute rabbit in Happy Tree Friends style and punk vibe."], # noqa
["A humanoid eagle soldier of the First World War."], # noqa
["A cute Christmas mockup on an old wooden industrial desk table with Christmas decorations and bokeh lights in the background."],
["A front view of a romantic flower shop in France filled with various blooming flowers including lavenders and roses."],
["An old man, portrayed as a retro superhero, stands in the streets of New York City at night"],
["many trees are surrounded by a lake in autumn colors, in the style of nature-inspired imagery, havencore, brightly colored, dark white and dark orange, bright primary colors, environmental activism, forestpunk --ar 64:51"],
["A fluffy mouse holding a watermelon, in a magical and colorful setting, illustrated in the style of Hayao Miyazaki anime by Studio Ghibli."],
["Inka warrior with a war make up, medium shot, natural light, Award winning wildlife photography, hyperrealistic, 8k resolution, --ar 9:16"],
["Character of lion in style of saiyan, mafia, gangsta, citylights background, Hyper detailed, hyper realistic, unreal engine ue5, cgi 3d, cinematic shot, 8k"],
["In the sky above, a giant, whimsical cloud shaped like the 😊 emoji casts a soft, golden light over the scene"],
["Cyberpunk eagle, neon ambiance, abstract black oil, gear mecha, detailed acrylic, grunge, intricate complexity, rendered in unreal engine 5, photorealistic, 8k"],
["close-up photo of a beautiful red rose breaking through a cube made of ice , splintered cracked ice surface, frosted colors, blood dripping from rose, melting ice, Valentine’s Day vibes, cinematic, sharp focus, intricate, cinematic, dramatic light"],
["3D cartoon Fox Head with Human Body, Wearing Iridescent Holographic Liquid Texture & Translucent Material Sun Protective Shirt, Boss Feel, Nike or Addidas Sun Protective Shirt, WitchPunk, Y2K Style, Green and blue, Blue, Metallic Feel, Strong Reflection, plain background, no background, pure single color background, Digital Fashion, Surreal Futurism, Supreme Kong NFT Artwork Style, disney style, headshot photography for portrait studio shoot, fashion editorial aesthetic, high resolution in the style of HAPE PRIME NFT, NFT 3D IP Feel, Bored Ape Yacht Club NFT project Feel, high detail, fine luster, 3D render, oc render, best quality, 8K, bright, front lighting, Face Shot, fine luster, ultra detailed"],
]
class ModelFailure:
pass
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(
prompt_batch, text_encoder, tokenizer, proportion_empty_prompts, is_train=True
):
captions = []
for caption in prompt_batch:
if random.random() < proportion_empty_prompts:
captions.append("")
elif isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
with torch.no_grad():
text_inputs = tokenizer(
captions,
padding=True,
pad_to_multiple_of=8,
max_length=256,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_masks = text_inputs.attention_mask
prompt_embeds = text_encoder(
input_ids=text_input_ids.cuda(),
attention_mask=prompt_masks.cuda(),
output_hidden_states=True,
).hidden_states[-2]
return prompt_embeds, prompt_masks
@torch.no_grad()
def model_main(args, master_port, rank, request_queue, response_queue):
# import here to avoid huggingface Tokenizer parallelism warnings
from diffusers.models import AutoencoderKL
from transformers import AutoModelForCausalLM, AutoTokenizer
# override the default print function since the delay can be large for child process
original_print = builtins.print
# Redefine the print function with flush=True by default
def print(*args, **kwargs):
kwargs.setdefault("flush", True)
original_print(*args, **kwargs)
# Override the built-in print with the new version
builtins.print = print
os.environ["MASTER_PORT"] = str(master_port)
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(args.num_gpus)
dist.init_process_group("nccl")
# set up fairscale environment because some methods of the Lumina model need it,
# though for single-GPU inference fairscale actually has no effect
fs_init.initialize_model_parallel(args.num_gpus)
torch.cuda.set_device(rank)
train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
if dist.get_rank() == 0:
print("Loaded model arguments:", json.dumps(train_args.__dict__, indent=2))
if dist.get_rank() == 0:
print(f"Creating lm: Gemma-2B")
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[
args.precision
]
text_encoder = (
AutoModelForCausalLM.from_pretrained(
"google/gemma-2b", torch_dtype=dtype, device_map="cuda", token=hf_token,
)
.get_decoder()
.eval()
)
cap_feat_dim = text_encoder.config.hidden_size
if args.num_gpus > 1:
raise NotImplementedError("Inference with >1 GPUs not yet supported")
tokenizer = AutoTokenizer.from_pretrained(
"google/gemma-2b", add_bos_token=True, add_eos_token=True, token=hf_token,
)
tokenizer.padding_side = "right"
if dist.get_rank() == 0:
print(f"Creating vae: sdxl-vae")
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",
torch_dtype=torch.float32,
).cuda()
if dist.get_rank() == 0:
print(f"Creating DiT: Next-DiT")
# latent_size = train_args.image_size // 8
model = models.__dict__["NextDiT_2B_patch2"](
qk_norm=train_args.qk_norm,
cap_feat_dim=cap_feat_dim,
)
model.eval().to("cuda", dtype=dtype)
assert train_args.model_parallel_size == args.num_gpus
if args.ema:
print("Loading ema model.")
ckpt = torch.load(
os.path.join(
args.ckpt,
f"consolidated{'_ema' if args.ema else ''}.{rank:02d}-of-{args.num_gpus:02d}.pth",
),
map_location="cpu",
)
model.load_state_dict(ckpt, strict=True)
# mp_barrier.wait()
with torch.autocast("cuda", dtype):
while True:
(
cap,
resolution,
num_sampling_steps,
cfg_scale,
solver,
t_shift,
seed,
ntk_scaling,
proportional_attn,
) = request_queue.get()
print(
"> params:",
cap,
resolution,
num_sampling_steps,
cfg_scale,
solver,
t_shift,
seed,
ntk_scaling,
proportional_attn,
)
try:
# begin sampler
transport = create_transport(
args.path_type,
args.prediction,
args.loss_weight,
args.train_eps,
args.sample_eps,
)
sampler = Sampler(transport)
if args.sampler_mode == "ODE":
if args.likelihood:
# assert args.cfg_scale == 1, "Likelihood is incompatible with guidance" # todo
sample_fn = sampler.sample_ode_likelihood(
sampling_method=solver,
num_steps=num_sampling_steps,
atol=args.atol,
rtol=args.rtol,
)
else:
sample_fn = sampler.sample_ode(
sampling_method=solver,
num_steps=num_sampling_steps,
atol=args.atol,
rtol=args.rtol,
reverse=args.reverse,
time_shifting_factor=t_shift,
)
elif args.sampler_mode == "SDE":
sample_fn = sampler.sample_sde(
sampling_method=solver,
diffusion_form=args.diffusion_form,
diffusion_norm=args.diffusion_norm,
last_step=args.last_step,
last_step_size=args.last_step_size,
num_steps=num_sampling_steps,
)
# end sampler
resolution = resolution.split(" ")[-1]
w, h = resolution.split("x")
w, h = int(w), int(h)
latent_w, latent_h = w // 8, h // 8
if int(seed) != 0:
torch.random.manual_seed(int(seed))
z = torch.randn([1, 4, latent_h, latent_w], device="cuda").to(dtype)
z = z.repeat(2, 1, 1, 1)
with torch.no_grad():
cap_feats, cap_mask = encode_prompt(
[cap] + [""], text_encoder, tokenizer, 0.0
)
cap_mask = cap_mask.to(cap_feats.device)
train_res = 1024
res_cat = (w * h) ** 0.5
print(f"res_cat: {res_cat}")
max_seq_len = (res_cat // 16) ** 2 + (res_cat // 16) * 2
print(f"max_seq_len: {max_seq_len}")
rope_scaling_factor = 1.0
ntk_factor = max_seq_len / (train_res // 16) ** 2
print(f"ntk_factor: {ntk_factor}")
model_kwargs = dict(
cap_feats=cap_feats,
cap_mask=cap_mask,
cfg_scale=cfg_scale,
rope_scaling_factor=rope_scaling_factor,
ntk_factor=ntk_factor,
)
if dist.get_rank() == 0:
print(f"caption: {cap}")
print(f"num_sampling_steps: {num_sampling_steps}")
print(f"cfg_scale: {cfg_scale}")
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
print("> [debug] start sample")
samples = sample_fn(z, model.forward_with_cfg, **model_kwargs)[-1]
samples = samples[:1]
factor = 0.18215 if train_args.vae != "sdxl" else 0.13025
print(f"vae factor: {factor}")
samples = vae.decode(samples / factor).sample
samples = (samples + 1.0) / 2.0
samples.clamp_(0.0, 1.0)
img = to_pil_image(samples[0].float())
if response_queue is not None:
response_queue.put(img)
except Exception:
print(traceback.format_exc())
response_queue.put(ModelFailure())
def none_or_str(value):
if value == "None":
return None
return value
def parse_transport_args(parser):
group = parser.add_argument_group("Transport arguments")
group.add_argument(
"--path-type",
type=str,
default="Linear",
choices=["Linear", "GVP", "VP"],
help="the type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).",
)
group.add_argument(
"--prediction",
type=str,
default="velocity",
choices=["velocity", "score", "noise"],
help="the prediction model for the transport dynamics.",
)
group.add_argument(
"--loss-weight",
type=none_or_str,
default=None,
choices=[None, "velocity", "likelihood"],
help="the weighting of different components in the loss function, can be 'velocity' for dynamic modeling, 'likelihood' for statistical consistency, or None for no weighting.",
)
group.add_argument(
"--sample-eps", type=float, help="sampling in the transport model."
)
group.add_argument(
"--train-eps", type=float, help="training to stabilize the learning process."
)
def parse_ode_args(parser):
group = parser.add_argument_group("ODE arguments")
group.add_argument(
"--atol",
type=float,
default=1e-6,
help="Absolute tolerance for the ODE solver.",
)
group.add_argument(
"--rtol",
type=float,
default=1e-3,
help="Relative tolerance for the ODE solver.",
)
group.add_argument(
"--reverse", action="store_true", help="run the ODE solver in reverse."
)
group.add_argument(
"--likelihood",
action="store_true",
help="Enable calculation of likelihood during the ODE solving process.",
)
def parse_sde_args(parser):
group = parser.add_argument_group("SDE arguments")
group.add_argument(
"--sampling-method",
type=str,
default="Euler",
choices=["Euler", "Heun"],
help="the numerical method used for sampling the stochastic differential equation: 'Euler' for simplicity or 'Heun' for improved accuracy.",
)
group.add_argument(
"--diffusion-form",
type=str,
default="sigma",
choices=[
"constant",
"SBDM",
"sigma",
"linear",
"decreasing",
"increasing-decreasing",
],
help="form of diffusion coefficient in the SDE",
)
group.add_argument(
"--diffusion-norm",
type=float,
default=1.0,
help="Normalizes the diffusion coefficient, affecting the scale of the stochastic component.",
)
group.add_argument(
"--last-step",
type=none_or_str,
default="Mean",
choices=[None, "Mean", "Tweedie", "Euler"],
help="form of last step taken in the SDE",
)
group.add_argument(
"--last-step-size", type=float, default=0.04, help="size of the last step taken"
)
def find_free_port() -> int:
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(("", 0))
port = sock.getsockname()[1]
sock.close()
return port
@spaces.GPU
def main():
parser = argparse.ArgumentParser()
mode = "ODE"
parser.add_argument("--num_gpus", type=int, default=1)
parser.add_argument("--ckpt", type=str, default="/home/user/app/checkpoints")
parser.add_argument("--ema", type=bool, default=True)
parser.add_argument("--precision", default="bf16", choices=["bf16", "fp32"])
parse_transport_args(parser)
if mode == "ODE":
parse_ode_args(parser)
# Further processing for ODE
elif mode == "SDE":
parse_sde_args(parser)
# Further processing for SDE
args = parser.parse_known_args()[0]
if args.num_gpus != 1:
raise NotImplementedError("Multi-GPU Inference is not yet supported")
args.sampler_mode = mode
master_port = find_free_port()
processes = []
request_queues = []
response_queue = Queue()
# mp_barrier = mp.Barrier(args.num_gpus + 1)
for i in range(args.num_gpus):
request_queues.append(Queue())
generation_kwargs = dict(
args=args,
master_port=master_port,
rank=i,
request_queue=request_queues[i],
response_queue=response_queue if i == 0 else None,
)
thread = Thread(target=model_main, kwargs=generation_kwargs)
thread.start()
processes.append(thread)
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(description)
with gr.Row():
with gr.Column():
cap = gr.Textbox(
lines=2,
label="Caption",
interactive=True,
value="Miss Mexico portrait of the most beautiful mexican woman, Exquisite detail, 30-megapixel, 4k, 85-mm-lens, sharp-focus, f:8, "
"ISO 100, shutter-speed 1:125, diffuse-back-lighting, award-winning photograph, small-catchlight, High-sharpness, facial-symmetry, 8k --q 2 --ar 18:32 --v 5",
)
with gr.Row():
res_choices = ["1024x1024", "512x2048", "2048x512"] + [
"(Extrapolation) 1664x1664",
"(Extrapolation) 1024x2048",
"(Extrapolation) 2048x1024",
]
resolution = gr.Dropdown(
value=res_choices[0], choices=res_choices, label="Resolution"
)
with gr.Row():
num_sampling_steps = gr.Slider(
minimum=1,
maximum=70,
value=30,
interactive=True,
label="Sampling steps",
)
seed = gr.Slider(
minimum=0,
maximum=int(1e5),
value=1,
step=1,
interactive=True,
label="Seed (0 for random)",
)
with gr.Accordion(
"Advanced Settings for Resolution Extrapolation", open=False
):
with gr.Row():
solver = gr.Dropdown(
value="euler",
choices=["euler", "dopri5", "dopri8"],
label="solver",
)
t_shift = gr.Slider(
minimum=1,
maximum=20,
value=6,
step=1,
interactive=True,
label="Time shift",
)
cfg_scale = gr.Slider(
minimum=1.0,
maximum=20.0,
value=4.0,
interactive=True,
label="CFG scale",
)
with gr.Row():
ntk_scaling = gr.Checkbox(
value=True,
interactive=True,
label="ntk scaling",
)
proportional_attn = gr.Checkbox(
value=True,
interactive=True,
label="Proportional attention",
)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
# reset_btn = gr.ClearButton([
# cap, resolution,
# num_sampling_steps, cfg_scale, solver,
# t_shift, seed,
# ntk_scaling, proportional_attn
# ])
with gr.Column():
# default_img = Image.open("./image.png")
output_img = gr.Image(
label="Generated image",
interactive=False,
format="png",
# value=default_img,
)
with gr.Row():
gr.Examples(
[examples],
[cap],
label="Examples",
)
def on_submit(*args):
for q in request_queues:
q.put(args)
result = response_queue.get()
if isinstance(result, ModelFailure):
raise RuntimeError
return result
submit_btn.click(
on_submit,
[
cap,
resolution,
num_sampling_steps,
cfg_scale,
solver,
t_shift,
seed,
ntk_scaling,
proportional_attn,
],
[output_img],
)
# mp_barrier.wait()
demo.queue(max_size=20).launch()
if __name__ == "__main__":
# mp.set_start_method("spawn")
main()