AliZain1 commited on
Commit
74522b2
1 Parent(s): 8ab69f4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -26
app.py CHANGED
@@ -1,6 +1,7 @@
1
- from fastapi import FastAPI, File, UploadFile
2
- from langchain.text_splitter import RecursiveCharacterTextSplitter
3
  from PyPDF2 import PdfReader
 
 
4
  from langchain_google_genai import GoogleGenerativeAIEmbeddings
5
  import google.generativeai as genai
6
  from langchain.vectorstores import FAISS
@@ -8,32 +9,40 @@ from langchain_google_genai import ChatGoogleGenerativeAI
8
  from langchain.chains.question_answering import load_qa_chain
9
  from langchain.prompts import PromptTemplate
10
  from dotenv import load_dotenv
11
- import os
12
 
13
  load_dotenv()
 
14
  genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
15
 
16
- app = FastAPI()
 
 
 
17
 
18
  def get_pdf_text(pdf_docs):
19
- text = ""
20
  for pdf in pdf_docs:
21
- pdf_reader = PdfReader(pdf)
22
  for page in pdf_reader.pages:
23
- text += page.extract_text()
24
- return text
 
 
25
 
26
  def get_text_chunks(text):
27
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
28
  chunks = text_splitter.split_text(text)
29
  return chunks
30
 
 
31
  def get_vector_store(text_chunks):
32
- embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
33
  vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
34
  vector_store.save_local("faiss_index")
35
 
 
36
  def get_conversational_chain():
 
37
  prompt_template = """
38
  Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
39
  provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
@@ -41,25 +50,57 @@ def get_conversational_chain():
41
  Question: \n{question}\n
42
  Answer:
43
  """
44
- model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
45
- prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
 
 
 
46
  chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
 
47
  return chain
48
 
49
- @app.post("/upload/")
50
- async def upload_pdfs(files: list[UploadFile]):
51
- pdf_docs = [await file.read() for file in files]
52
- raw_text = get_pdf_text(pdf_docs)
53
- text_chunks = get_text_chunks(raw_text)
54
- get_vector_store(text_chunks)
55
- return {"message": "PDFs processed and vector store created."}
56
-
57
- @app.post("/ask/")
58
- async def ask_question(question: str):
59
- embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
60
- new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
61
- docs = new_db.similarity_search(question)
62
  chain = get_conversational_chain()
63
- response = chain({"input_documents": docs, "question": question}, return_only_outputs=True)
64
- return {"response": response["output_text"]}
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
 
2
  from PyPDF2 import PdfReader
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ import os
5
  from langchain_google_genai import GoogleGenerativeAIEmbeddings
6
  import google.generativeai as genai
7
  from langchain.vectorstores import FAISS
 
9
  from langchain.chains.question_answering import load_qa_chain
10
  from langchain.prompts import PromptTemplate
11
  from dotenv import load_dotenv
 
12
 
13
  load_dotenv()
14
+ os.getenv("GOOGLE_API_KEY")
15
  genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
16
 
17
+
18
+
19
+
20
+
21
 
22
  def get_pdf_text(pdf_docs):
23
+ text=""
24
  for pdf in pdf_docs:
25
+ pdf_reader= PdfReader(pdf)
26
  for page in pdf_reader.pages:
27
+ text+= page.extract_text()
28
+ return text
29
+
30
+
31
 
32
  def get_text_chunks(text):
33
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
34
  chunks = text_splitter.split_text(text)
35
  return chunks
36
 
37
+
38
  def get_vector_store(text_chunks):
39
+ embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
40
  vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
41
  vector_store.save_local("faiss_index")
42
 
43
+
44
  def get_conversational_chain():
45
+
46
  prompt_template = """
47
  Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
48
  provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
 
50
  Question: \n{question}\n
51
  Answer:
52
  """
53
+
54
+ model = ChatGoogleGenerativeAI(model="gemini-pro",
55
+ temperature=0.3)
56
+
57
+ prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
58
  chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
59
+
60
  return chain
61
 
62
+
63
+
64
+ def user_input(user_question):
65
+ embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
66
+
67
+ new_db = FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization=True)
68
+ docs = new_db.similarity_search(user_question)
69
+
 
 
 
 
 
70
  chain = get_conversational_chain()
 
 
71
 
72
+
73
+ response = chain(
74
+ {"input_documents":docs, "question": user_question}
75
+ , return_only_outputs=True)
76
+
77
+ print(response)
78
+ st.write("Reply: ", response["output_text"])
79
+
80
+
81
+
82
+
83
+ def main():
84
+ st.set_page_config("Chat PDF")
85
+ st.header("Chat with PDF using Gemini💁")
86
+
87
+
88
+ user_question = st.text_input("Ask a Question from the PDF Files")
89
+
90
+ if user_question:
91
+ user_input(user_question)
92
+
93
+ with st.sidebar:
94
+ st.title("Menu:")
95
+ pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
96
+ if st.button("Submit & Process"):
97
+ with st.spinner("Processing..."):
98
+ raw_text = get_pdf_text(pdf_docs)
99
+ text_chunks = get_text_chunks(raw_text)
100
+ get_vector_store(text_chunks)
101
+ st.success("Done")
102
+
103
+
104
+
105
+ if __name__ == "__main__":
106
+ main()