MilitarEye / app.py
AliSaria's picture
Update app.py
0cadd71 verified
import gradio as gr
from tensorflow.keras.models import load_model
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO
# Load the trained model
model = load_model('model2.h5')
def predict_and_visualize(img):
# Input validation
if img is None:
raise gr.Error("Please upload an image")
try:
# Convert numpy array to PIL Image if necessary
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
# Store the original image size
original_size = img.size
# Convert the input image to the target size expected by the model
img_resized = img.resize((224, 224))
img_array = np.array(img_resized) / 255.0 # Normalize the image
# Ensure the image has 3 channels (RGB)
if len(img_array.shape) == 2: # Grayscale image
img_array = np.stack((img_array,)*3, axis=-1)
elif img_array.shape[-1] == 4: # RGBA image
img_array = img_array[:, :, :3]
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
# Make a prediction
prediction = model.predict(img_array)
# Process the prediction
predicted_mask = (prediction[0, :, :, 0] * 255).astype(np.uint8)
# Convert the prediction to a PIL image
prediction_image = Image.fromarray(predicted_mask, mode='L')
# Resize the predicted image back to the original image size
prediction_image = prediction_image.resize(original_size, Image.NEAREST)
return prediction_image
except Exception as e:
raise gr.Error(f"Error processing image: {str(e)}")
# Create the Gradio interface with examples
iface = gr.Interface(
fn=predict_and_visualize,
inputs=gr.Image(type="pil", label="Input Image"),
outputs=gr.Image(type="pil", label="Predicted Mask"),
title="MilitarEye: Military Stealth Camouflage Detector",
description="Upload an image of a military personnel camouflaged in their surroundings. The model will predict the camouflage mask silhouette.",
allow_flagging="never"
)
# Launch the app
iface.launch()