Upload 6 files
Browse files- Gradio.pdf +0 -0
- Gradio2.pdf +0 -0
- Gradio3.pdf +0 -0
- Gradio4.pdf +0 -0
- finalapp.ipynb +274 -0
- finalapp.py +274 -0
Gradio.pdf
ADDED
Binary file (137 kB). View file
|
|
Gradio2.pdf
ADDED
Binary file (97 kB). View file
|
|
Gradio3.pdf
ADDED
Binary file (77.7 kB). View file
|
|
Gradio4.pdf
ADDED
Binary file (60.5 kB). View file
|
|
finalapp.ipynb
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 19,
|
6 |
+
"metadata": {
|
7 |
+
"collapsed": true
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import gradio as gr\n",
|
13 |
+
"import requests\n",
|
14 |
+
"import json"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 20,
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"def list_to_dict(data):\n",
|
23 |
+
" results = {}\n",
|
24 |
+
"\n",
|
25 |
+
" for i in range(len(data)):\n",
|
26 |
+
" # Access the i-th dictionary in the list using an integer index\n",
|
27 |
+
" d = data[i]\n",
|
28 |
+
" # Assign the value of the 'label' key to the 'score' value in the results dictionary\n",
|
29 |
+
" results[d['label']] = d['score']\n",
|
30 |
+
"\n",
|
31 |
+
" # The results dictionary will now contain the label-score pairs from the data list\n",
|
32 |
+
" return results"
|
33 |
+
],
|
34 |
+
"metadata": {
|
35 |
+
"collapsed": false
|
36 |
+
}
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 21,
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"\n",
|
44 |
+
"\n",
|
45 |
+
"API_URL = \"https://api-inference.huggingface.co/models/nateraw/food\"\n",
|
46 |
+
"headers = {\"Authorization\": \"Bearer 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\"}\n",
|
47 |
+
"\n",
|
48 |
+
"def query(filename):\n",
|
49 |
+
" with open(filename, \"rb\") as f:\n",
|
50 |
+
" data = f.read()\n",
|
51 |
+
" response = requests.request(\"POST\", API_URL, headers=headers, data=data)\n",
|
52 |
+
" output = json.loads(response.content.decode(\"utf-8\"))\n",
|
53 |
+
" return list_to_dict(output),json.dumps(output, indent=2, sort_keys=True)"
|
54 |
+
],
|
55 |
+
"metadata": {
|
56 |
+
"collapsed": false
|
57 |
+
}
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": 27,
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"def get_nutrition_info(food_name):\n",
|
65 |
+
" #Make request to Nutritionix API\n",
|
66 |
+
" response = requests.get(\n",
|
67 |
+
" \"https://trackapi.nutritionix.com/v2/search/instant\",\n",
|
68 |
+
" params={\"query\": food_name},\n",
|
69 |
+
" headers={\n",
|
70 |
+
" \"x-app-id\": \"63a710ef\",\n",
|
71 |
+
" \"x-app-key\": \"3ddc7e3feda88e1cf6dd355fb26cb261\"\n",
|
72 |
+
" }\n",
|
73 |
+
" )\n",
|
74 |
+
" #Parse response and return relevant information\n",
|
75 |
+
" data = response.json()\n",
|
76 |
+
" response = data[\"branded\"][0][\"photo\"][\"thumb\"]\n",
|
77 |
+
"\n",
|
78 |
+
" # Open the image using PIL\n",
|
79 |
+
"\n",
|
80 |
+
" return {\n",
|
81 |
+
" \"food_name\": data[\"branded\"][0][\"food_name\"],\n",
|
82 |
+
" \"calories\": data[\"branded\"][0][\"nf_calories\"],\n",
|
83 |
+
" \"serving_size\": data[\"branded\"][0][\"serving_qty\"],\n",
|
84 |
+
" \"serving_unit\": data[\"branded\"][0][\"serving_unit\"],\n",
|
85 |
+
" #\"images\": data[\"branded\"][0][\"photo\"]\n",
|
86 |
+
" },response"
|
87 |
+
],
|
88 |
+
"metadata": {
|
89 |
+
"collapsed": false
|
90 |
+
}
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": 28,
|
95 |
+
"outputs": [
|
96 |
+
{
|
97 |
+
"data": {
|
98 |
+
"text/plain": "({'food_name': 'Hamburger',\n 'calories': 340,\n 'serving_size': 1,\n 'serving_unit': 'sandwich'},\n 'https://d2eawub7utcl6.cloudfront.net/images/nix-apple-grey.png')"
|
99 |
+
},
|
100 |
+
"execution_count": 28,
|
101 |
+
"metadata": {},
|
102 |
+
"output_type": "execute_result"
|
103 |
+
}
|
104 |
+
],
|
105 |
+
"source": [
|
106 |
+
"get_nutrition_info(\"Hamburger\")"
|
107 |
+
],
|
108 |
+
"metadata": {
|
109 |
+
"collapsed": false
|
110 |
+
}
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"execution_count": 22,
|
115 |
+
"outputs": [],
|
116 |
+
"source": [],
|
117 |
+
"metadata": {
|
118 |
+
"collapsed": false
|
119 |
+
}
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 22,
|
124 |
+
"outputs": [],
|
125 |
+
"source": [],
|
126 |
+
"metadata": {
|
127 |
+
"collapsed": false
|
128 |
+
}
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": null,
|
133 |
+
"outputs": [
|
134 |
+
{
|
135 |
+
"name": "stdout",
|
136 |
+
"output_type": "stream",
|
137 |
+
"text": [
|
138 |
+
"Running on local URL: http://127.0.0.1:7869\n",
|
139 |
+
"Running on public URL: https://f7f1e48778aede65.gradio.app\n",
|
140 |
+
"\n",
|
141 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"data": {
|
146 |
+
"text/plain": "<IPython.core.display.HTML object>",
|
147 |
+
"text/html": "<div><iframe src=\"https://f7f1e48778aede65.gradio.app\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
148 |
+
},
|
149 |
+
"metadata": {},
|
150 |
+
"output_type": "display_data"
|
151 |
+
}
|
152 |
+
],
|
153 |
+
"source": [
|
154 |
+
"with gr.Blocks() as demo:\n",
|
155 |
+
" gr.Markdown(\"Food-Classification-Calorie-Estimation and Volume-Estimation\")\n",
|
156 |
+
" with gr.Tab(\"Food Classification\"):\n",
|
157 |
+
" text_input = gr.Image(type=\"filepath\")\n",
|
158 |
+
" text_output = [gr.Label(num_top_classes=6),\n",
|
159 |
+
" gr.Textbox()\n",
|
160 |
+
" ]\n",
|
161 |
+
" text_button = gr.Button(\"Food Classification\")\n",
|
162 |
+
" with gr.Tab(\"Food Calorie Estimation\"):\n",
|
163 |
+
" image_input = gr.Textbox(label=\"Please enter the name of the Food you want to get calorie\")\n",
|
164 |
+
" image_output = [gr.Textbox(),\n",
|
165 |
+
" gr.Image(type=\"filepath\")\n",
|
166 |
+
" ]\n",
|
167 |
+
" image_button = gr.Button(\"Estimate Calories!\")\n",
|
168 |
+
" with gr.Tab(\"Volume Estimation\"):\n",
|
169 |
+
" _image_input = gr.Textbox(label=\"Please enter the name of the Food you want to get calorie\")\n",
|
170 |
+
" _image_output = [gr.Textbox(),\n",
|
171 |
+
" gr.Image()\n",
|
172 |
+
" ]\n",
|
173 |
+
" _image_button = gr.Button(\"Volume Calculation\")\n",
|
174 |
+
" with gr.Tab(\"Future Works\"):\n",
|
175 |
+
" gr.Markdown(\"Future work on Food Classification\")\n",
|
176 |
+
" gr.Markdown(\n",
|
177 |
+
" \"Currently the Model is trained on food-101 Dataset, which has 100 classes, In the future iteration of the project we would like to train the model on UNIMIB Dataset with 256 Food Classes\")\n",
|
178 |
+
" gr.Markdown(\"Future work on Volume Estimation\")\n",
|
179 |
+
" gr.Markdown(\n",
|
180 |
+
" \"The volume model has been trained on Apple AR Toolkit and thus can be executred only on Apple devices ie a iOS platform, In futur we would like to train the volume model such that it is Platform independent\")\n",
|
181 |
+
" gr.Markdown(\"Future work on Calorie Estimation\")\n",
|
182 |
+
" gr.Markdown(\n",
|
183 |
+
" \"The Calorie Estimation currently relies on Nutritionix API , In Future Iteration we would like to build our own Custom Database of Major Food Product across New York Restaurent\")\n",
|
184 |
+
" gr.Markdown(\"https://github.com/Ali-Maq/Food-Classification-Volume-Estimation-and-Calorie-Estimation/blob/main/README.md\")\n",
|
185 |
+
"\n",
|
186 |
+
" text_button.click(query, inputs=text_input, outputs=text_output)\n",
|
187 |
+
" image_button.click(get_nutrition_info, inputs=image_input, outputs=image_output)\n",
|
188 |
+
" _image_button.click(get_nutrition_info, inputs=_image_input, outputs=_image_output)\n",
|
189 |
+
" with gr.Accordion(\"Open for More!\"):\n",
|
190 |
+
" gr.Markdown(\"π Designed and built by Ali Under the Guidance of Professor Dennis Shasha\")\n",
|
191 |
+
" gr.Markdown(\"Contact me at [email protected] π\")\n",
|
192 |
+
"\n",
|
193 |
+
"demo.launch(share=True, debug=True)"
|
194 |
+
],
|
195 |
+
"metadata": {
|
196 |
+
"collapsed": false,
|
197 |
+
"pycharm": {
|
198 |
+
"is_executing": true
|
199 |
+
}
|
200 |
+
}
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": null,
|
205 |
+
"outputs": [],
|
206 |
+
"source": [
|
207 |
+
"import numpy as np\n",
|
208 |
+
"import gradio as gr\n",
|
209 |
+
"\n",
|
210 |
+
"def flip_text(x):\n",
|
211 |
+
" return x[::-1]\n",
|
212 |
+
"\n",
|
213 |
+
"def flip_image(x):\n",
|
214 |
+
" return np.fliplr(x)\n",
|
215 |
+
"\n",
|
216 |
+
"with gr.Blocks() as demo:\n",
|
217 |
+
" gr.Markdown(\"Flip text or image files using this demo.\")\n",
|
218 |
+
" with gr.Tab(\"Flip Text\"):\n",
|
219 |
+
" text_input = gr.Textbox()\n",
|
220 |
+
" text_output = gr.Textbox()\n",
|
221 |
+
" text_button = gr.Button(\"Flip\")\n",
|
222 |
+
" with gr.Tab(\"Flip Image\"):\n",
|
223 |
+
" with gr.Row():\n",
|
224 |
+
" image_input = gr.Image()\n",
|
225 |
+
" image_output = gr.Image()\n",
|
226 |
+
" image_button = gr.Button(\"Flip\")\n",
|
227 |
+
"\n",
|
228 |
+
" with gr.Accordion(\"Open for More!\"):\n",
|
229 |
+
" gr.Markdown(\"Look at me...\")\n",
|
230 |
+
"\n",
|
231 |
+
" text_button.click(get_nutrition_info, inputs=text_input, outputs=text_output)\n",
|
232 |
+
" image_button.click(query, inputs=image_input, outputs=image_output)\n",
|
233 |
+
"\n",
|
234 |
+
"demo.launch()"
|
235 |
+
],
|
236 |
+
"metadata": {
|
237 |
+
"collapsed": false,
|
238 |
+
"pycharm": {
|
239 |
+
"is_executing": true
|
240 |
+
}
|
241 |
+
}
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"cell_type": "code",
|
245 |
+
"execution_count": null,
|
246 |
+
"outputs": [],
|
247 |
+
"source": [],
|
248 |
+
"metadata": {
|
249 |
+
"collapsed": false
|
250 |
+
}
|
251 |
+
}
|
252 |
+
],
|
253 |
+
"metadata": {
|
254 |
+
"kernelspec": {
|
255 |
+
"display_name": "Python 3",
|
256 |
+
"language": "python",
|
257 |
+
"name": "python3"
|
258 |
+
},
|
259 |
+
"language_info": {
|
260 |
+
"codemirror_mode": {
|
261 |
+
"name": "ipython",
|
262 |
+
"version": 2
|
263 |
+
},
|
264 |
+
"file_extension": ".py",
|
265 |
+
"mimetype": "text/x-python",
|
266 |
+
"name": "python",
|
267 |
+
"nbconvert_exporter": "python",
|
268 |
+
"pygments_lexer": "ipython2",
|
269 |
+
"version": "2.7.6"
|
270 |
+
}
|
271 |
+
},
|
272 |
+
"nbformat": 4,
|
273 |
+
"nbformat_minor": 0
|
274 |
+
}
|
finalapp.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 19,
|
6 |
+
"metadata": {
|
7 |
+
"collapsed": true
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import gradio as gr\n",
|
13 |
+
"import requests\n",
|
14 |
+
"import json"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 20,
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"def list_to_dict(data):\n",
|
23 |
+
" results = {}\n",
|
24 |
+
"\n",
|
25 |
+
" for i in range(len(data)):\n",
|
26 |
+
" # Access the i-th dictionary in the list using an integer index\n",
|
27 |
+
" d = data[i]\n",
|
28 |
+
" # Assign the value of the 'label' key to the 'score' value in the results dictionary\n",
|
29 |
+
" results[d['label']] = d['score']\n",
|
30 |
+
"\n",
|
31 |
+
" # The results dictionary will now contain the label-score pairs from the data list\n",
|
32 |
+
" return results"
|
33 |
+
],
|
34 |
+
"metadata": {
|
35 |
+
"collapsed": false
|
36 |
+
}
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 21,
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"\n",
|
44 |
+
"\n",
|
45 |
+
"API_URL = \"https://api-inference.huggingface.co/models/nateraw/food\"\n",
|
46 |
+
"headers = {\"Authorization\": \"Bearer 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\"}\n",
|
47 |
+
"\n",
|
48 |
+
"def query(filename):\n",
|
49 |
+
" with open(filename, \"rb\") as f:\n",
|
50 |
+
" data = f.read()\n",
|
51 |
+
" response = requests.request(\"POST\", API_URL, headers=headers, data=data)\n",
|
52 |
+
" output = json.loads(response.content.decode(\"utf-8\"))\n",
|
53 |
+
" return list_to_dict(output),json.dumps(output, indent=2, sort_keys=True)"
|
54 |
+
],
|
55 |
+
"metadata": {
|
56 |
+
"collapsed": false
|
57 |
+
}
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": 27,
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"def get_nutrition_info(food_name):\n",
|
65 |
+
" #Make request to Nutritionix API\n",
|
66 |
+
" response = requests.get(\n",
|
67 |
+
" \"https://trackapi.nutritionix.com/v2/search/instant\",\n",
|
68 |
+
" params={\"query\": food_name},\n",
|
69 |
+
" headers={\n",
|
70 |
+
" \"x-app-id\": \"63a710ef\",\n",
|
71 |
+
" \"x-app-key\": \"3ddc7e3feda88e1cf6dd355fb26cb261\"\n",
|
72 |
+
" }\n",
|
73 |
+
" )\n",
|
74 |
+
" #Parse response and return relevant information\n",
|
75 |
+
" data = response.json()\n",
|
76 |
+
" response = data[\"branded\"][0][\"photo\"][\"thumb\"]\n",
|
77 |
+
"\n",
|
78 |
+
" # Open the image using PIL\n",
|
79 |
+
"\n",
|
80 |
+
" return {\n",
|
81 |
+
" \"food_name\": data[\"branded\"][0][\"food_name\"],\n",
|
82 |
+
" \"calories\": data[\"branded\"][0][\"nf_calories\"],\n",
|
83 |
+
" \"serving_size\": data[\"branded\"][0][\"serving_qty\"],\n",
|
84 |
+
" \"serving_unit\": data[\"branded\"][0][\"serving_unit\"],\n",
|
85 |
+
" #\"images\": data[\"branded\"][0][\"photo\"]\n",
|
86 |
+
" },response"
|
87 |
+
],
|
88 |
+
"metadata": {
|
89 |
+
"collapsed": false
|
90 |
+
}
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": 28,
|
95 |
+
"outputs": [
|
96 |
+
{
|
97 |
+
"data": {
|
98 |
+
"text/plain": "({'food_name': 'Hamburger',\n 'calories': 340,\n 'serving_size': 1,\n 'serving_unit': 'sandwich'},\n 'https://d2eawub7utcl6.cloudfront.net/images/nix-apple-grey.png')"
|
99 |
+
},
|
100 |
+
"execution_count": 28,
|
101 |
+
"metadata": {},
|
102 |
+
"output_type": "execute_result"
|
103 |
+
}
|
104 |
+
],
|
105 |
+
"source": [
|
106 |
+
"get_nutrition_info(\"Hamburger\")"
|
107 |
+
],
|
108 |
+
"metadata": {
|
109 |
+
"collapsed": false
|
110 |
+
}
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"execution_count": 22,
|
115 |
+
"outputs": [],
|
116 |
+
"source": [],
|
117 |
+
"metadata": {
|
118 |
+
"collapsed": false
|
119 |
+
}
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 22,
|
124 |
+
"outputs": [],
|
125 |
+
"source": [],
|
126 |
+
"metadata": {
|
127 |
+
"collapsed": false
|
128 |
+
}
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": null,
|
133 |
+
"outputs": [
|
134 |
+
{
|
135 |
+
"name": "stdout",
|
136 |
+
"output_type": "stream",
|
137 |
+
"text": [
|
138 |
+
"Running on local URL: http://127.0.0.1:7869\n",
|
139 |
+
"Running on public URL: https://f7f1e48778aede65.gradio.app\n",
|
140 |
+
"\n",
|
141 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"data": {
|
146 |
+
"text/plain": "<IPython.core.display.HTML object>",
|
147 |
+
"text/html": "<div><iframe src=\"https://f7f1e48778aede65.gradio.app\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
148 |
+
},
|
149 |
+
"metadata": {},
|
150 |
+
"output_type": "display_data"
|
151 |
+
}
|
152 |
+
],
|
153 |
+
"source": [
|
154 |
+
"with gr.Blocks() as demo:\n",
|
155 |
+
" gr.Markdown(\"Food-Classification-Calorie-Estimation and Volume-Estimation\")\n",
|
156 |
+
" with gr.Tab(\"Food Classification\"):\n",
|
157 |
+
" text_input = gr.Image(type=\"filepath\")\n",
|
158 |
+
" text_output = [gr.Label(num_top_classes=6),\n",
|
159 |
+
" gr.Textbox()\n",
|
160 |
+
" ]\n",
|
161 |
+
" text_button = gr.Button(\"Food Classification\")\n",
|
162 |
+
" with gr.Tab(\"Food Calorie Estimation\"):\n",
|
163 |
+
" image_input = gr.Textbox(label=\"Please enter the name of the Food you want to get calorie\")\n",
|
164 |
+
" image_output = [gr.Textbox(),\n",
|
165 |
+
" gr.Image(type=\"filepath\")\n",
|
166 |
+
" ]\n",
|
167 |
+
" image_button = gr.Button(\"Estimate Calories!\")\n",
|
168 |
+
" with gr.Tab(\"Volume Estimation\"):\n",
|
169 |
+
" _image_input = gr.Textbox(label=\"Please enter the name of the Food you want to get calorie\")\n",
|
170 |
+
" _image_output = [gr.Textbox(),\n",
|
171 |
+
" gr.Image()\n",
|
172 |
+
" ]\n",
|
173 |
+
" _image_button = gr.Button(\"Volume Calculation\")\n",
|
174 |
+
" with gr.Tab(\"Future Works\"):\n",
|
175 |
+
" gr.Markdown(\"Future work on Food Classification\")\n",
|
176 |
+
" gr.Markdown(\n",
|
177 |
+
" \"Currently the Model is trained on food-101 Dataset, which has 100 classes, In the future iteration of the project we would like to train the model on UNIMIB Dataset with 256 Food Classes\")\n",
|
178 |
+
" gr.Markdown(\"Future work on Volume Estimation\")\n",
|
179 |
+
" gr.Markdown(\n",
|
180 |
+
" \"The volume model has been trained on Apple AR Toolkit and thus can be executred only on Apple devices ie a iOS platform, In futur we would like to train the volume model such that it is Platform independent\")\n",
|
181 |
+
" gr.Markdown(\"Future work on Calorie Estimation\")\n",
|
182 |
+
" gr.Markdown(\n",
|
183 |
+
" \"The Calorie Estimation currently relies on Nutritionix API , In Future Iteration we would like to build our own Custom Database of Major Food Product across New York Restaurent\")\n",
|
184 |
+
" gr.Markdown(\"https://github.com/Ali-Maq/Food-Classification-Volume-Estimation-and-Calorie-Estimation/blob/main/README.md\")\n",
|
185 |
+
"\n",
|
186 |
+
" text_button.click(query, inputs=text_input, outputs=text_output)\n",
|
187 |
+
" image_button.click(get_nutrition_info, inputs=image_input, outputs=image_output)\n",
|
188 |
+
" _image_button.click(get_nutrition_info, inputs=_image_input, outputs=_image_output)\n",
|
189 |
+
" with gr.Accordion(\"Open for More!\"):\n",
|
190 |
+
" gr.Markdown(\"π Designed and built by Ali Under the Guidance of Professor Dennis Shasha\")\n",
|
191 |
+
" gr.Markdown(\"Contact me at [email protected] π\")\n",
|
192 |
+
"\n",
|
193 |
+
"demo.launch(share=True, debug=True)"
|
194 |
+
],
|
195 |
+
"metadata": {
|
196 |
+
"collapsed": false,
|
197 |
+
"pycharm": {
|
198 |
+
"is_executing": true
|
199 |
+
}
|
200 |
+
}
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": null,
|
205 |
+
"outputs": [],
|
206 |
+
"source": [
|
207 |
+
"import numpy as np\n",
|
208 |
+
"import gradio as gr\n",
|
209 |
+
"\n",
|
210 |
+
"def flip_text(x):\n",
|
211 |
+
" return x[::-1]\n",
|
212 |
+
"\n",
|
213 |
+
"def flip_image(x):\n",
|
214 |
+
" return np.fliplr(x)\n",
|
215 |
+
"\n",
|
216 |
+
"with gr.Blocks() as demo:\n",
|
217 |
+
" gr.Markdown(\"Flip text or image files using this demo.\")\n",
|
218 |
+
" with gr.Tab(\"Flip Text\"):\n",
|
219 |
+
" text_input = gr.Textbox()\n",
|
220 |
+
" text_output = gr.Textbox()\n",
|
221 |
+
" text_button = gr.Button(\"Flip\")\n",
|
222 |
+
" with gr.Tab(\"Flip Image\"):\n",
|
223 |
+
" with gr.Row():\n",
|
224 |
+
" image_input = gr.Image()\n",
|
225 |
+
" image_output = gr.Image()\n",
|
226 |
+
" image_button = gr.Button(\"Flip\")\n",
|
227 |
+
"\n",
|
228 |
+
" with gr.Accordion(\"Open for More!\"):\n",
|
229 |
+
" gr.Markdown(\"Look at me...\")\n",
|
230 |
+
"\n",
|
231 |
+
" text_button.click(get_nutrition_info, inputs=text_input, outputs=text_output)\n",
|
232 |
+
" image_button.click(query, inputs=image_input, outputs=image_output)\n",
|
233 |
+
"\n",
|
234 |
+
"demo.launch()"
|
235 |
+
],
|
236 |
+
"metadata": {
|
237 |
+
"collapsed": false,
|
238 |
+
"pycharm": {
|
239 |
+
"is_executing": true
|
240 |
+
}
|
241 |
+
}
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"cell_type": "code",
|
245 |
+
"execution_count": null,
|
246 |
+
"outputs": [],
|
247 |
+
"source": [],
|
248 |
+
"metadata": {
|
249 |
+
"collapsed": false
|
250 |
+
}
|
251 |
+
}
|
252 |
+
],
|
253 |
+
"metadata": {
|
254 |
+
"kernelspec": {
|
255 |
+
"display_name": "Python 3",
|
256 |
+
"language": "python",
|
257 |
+
"name": "python3"
|
258 |
+
},
|
259 |
+
"language_info": {
|
260 |
+
"codemirror_mode": {
|
261 |
+
"name": "ipython",
|
262 |
+
"version": 2
|
263 |
+
},
|
264 |
+
"file_extension": ".py",
|
265 |
+
"mimetype": "text/x-python",
|
266 |
+
"name": "python",
|
267 |
+
"nbconvert_exporter": "python",
|
268 |
+
"pygments_lexer": "ipython2",
|
269 |
+
"version": "2.7.6"
|
270 |
+
}
|
271 |
+
},
|
272 |
+
"nbformat": 4,
|
273 |
+
"nbformat_minor": 0
|
274 |
+
}
|