Spaces:
Sleeping
Sleeping
File size: 10,100 Bytes
1d47317 d1b3545 1d47317 d1b3545 1d47317 d1b3545 e135b49 1d47317 d1b3545 1d47317 d1b3545 1d47317 d1b3545 1d47317 d1b3545 1d47317 d1b3545 1d47317 d1b3545 1d47317 d1b3545 1d47317 d1b3545 1d47317 d1b3545 1d47317 d1b3545 1d47317 d1b3545 1d47317 d1b3545 1d47317 d1b3545 1d47317 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import re
import cv2
import numpy as np
from paddleocr import PaddleOCR
from PIL import Image
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.pyplot as plt
import onnxruntime
import gradio as gr
# initialize the OCR
ocr = PaddleOCR(lang='sl',
enable_mkldnn=True,
cls=False,
show_log= False)
# initialize the models
model_deskew = onnxruntime.InferenceSession("./models/CNN_deskew_v0.0.2.onnx")
model_denoise = onnxruntime.InferenceSession("./models/autoencoder_denoise_v0.0.2.onnx")
##### All Functions #####
def preprocess_image(image):
'''
Function: preprocess image to make it lighter to work on
Input: resized image
Output: image
'''
image = np.array(image)
scale = 1.494
width = int(image.shape[1] / scale)
height = int(image.shape[0] / scale)
dim = (width, height)
image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
return image
def deskew(image, model):
'''
Function: deskew an image
Input: takes an image as an array
Output: deskewed image
'''
# map the model classes to the actual degree of skew
map = { 0: '-1', 1: '-10', 2: '-11', 3: '-12', 4: '-13',
5: '-14',6: '-15', 7: '-2', 8: '-3', 9: '-4',
10: '-5',11: '-6',12: '-7', 13: '-8', 14: '-9',
15: '0', 16: '1', 17: '10', 18: '11', 19: '12',
20: '13',21: '14',22: '15', 23: '180',24: '2',
25: '270',26: '3',27: '4', 28: '5', 29: '6',
30: '7', 31: '8',32: '9', 33: '90'}
image_d = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
width = int(image_d.shape[1] * 0.2)
height = int(image_d.shape[0] * 0.2)
dim = (width, height)
# resize image
res = cv2.resize(image_d, dim, interpolation = cv2.INTER_AREA)
resized = cv2.resize(res, (200, 200))
# add two dimensions to feed to the model
resized = resized.astype('float32').reshape(1, 200, 200 ,1)
# normalize
resized = resized/255
# predictions
predictions = model.run(None, {'conv2d_input': resized})
# best prediction
pred = predictions[0].argmax()
# angle of skew
angle = int(map[pred])
skew_confidence = predictions[0][0][pred] * 100
# deskew original image
if angle == 90:
deskewed_image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
return deskewed_image, angle, skew_confidence
if angle == 270:
deskewed_image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
return deskewed_image, angle, skew_confidence
(h, w) = image.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, -angle, 1.0)
deskewed_image = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC,
borderMode=cv2.BORDER_REPLICATE)
return deskewed_image, angle, skew_confidence
def prepare_image_to_autoencoder(image):
'''
Function: prepare the image to be passed to the autoencoder.
Input: image (_type_): deskewed image
Output: resized image to be passed to the autoencoder
'''
height, width = image.shape[:2]
target_height = 600
target_width = 600
image = image[int(height/3.6): int(height/1.87), int(width/3.67): int(width/1.575)]
# reshape image to fixed size
image = cv2.resize(image, (target_width, target_height))
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# normalize images
image = image / 255.0
# reshape to pass image to autoencoder
image = image.reshape(target_height, target_width, 1)
return image
def autoencode_ONNX(image, model):
'''
Function: remove noise from image
Input: image and autoencoder model
Output: image
'''
image = image.astype(np.float32).reshape(1, 600, 600, 1)
image = model.run(None, {'input_2': image})
image = image[0]
image = image.squeeze()
image = image * 255
image = image.astype('uint8')
return image
def extract_detected_entries_pdl(image):
"""
Extracts text, scores, and boundary boxes from an image using OCR and returns a DataFrame.
This function takes an input image, applies OCR to detect text in the image, and then extracts
the detected text, confidence scores, and boundary boxes for each text entry. The extracted
information is returned in a DataFrame with columns "Text", "Score", and "Boundary Box".
Parameters
----------
image : numpy.ndarray
The input image to be processed.
Returns
-------
pandas.DataFrame
A DataFrame containing the extracted text, confidence scores, and boundary boxes
for each detected text entry. The DataFrame has the following columns:
- "Text": The detected text.
- "Score": The confidence score for the detected text.
- "Boundary Box": The coordinates of the boundary box for the detected text.
"""
# run the OCR
result = ocr.ocr(image)
# creates the Pandas dataframe
txt = []
scores = []
boxes = []
for r in result[0]:
txt.append(cleanString_basic(r[-1][0]))
scores.append(r[-1][1])
boxes.append(r[0])
return pd.DataFrame(np.transpose([txt, scores, boxes]),columns = ["Text","Score", "Boundary Box"])
def cleanString_basic(word):
word = word.replace("$", "s")
return word
def clean_string_start(string: 'str'):
names_flags = "√"
chars_to_remove = ['!', "'", '[', ']', '*', '|', '.', ':', '\\', '/']
if string.startswith(tuple(chars_to_remove)):
names_flags = string[0]
string = string[1:]
return string, names_flags
def clean_string_end(string: 'str'):
names_flags = "√"
chars_to_remove = ['!', "'", '[', ']', '*', '|', '.', ':', '\\', '/']
if string.endswith(tuple(chars_to_remove)):
names_flags = string[-1]
string = string[:-1]
return string, names_flags
def clean_dates(date: 'str'):
'''
Function: cleans the fields "datum smrti" and returns the char removed.
Input: date (string format)
Output: cleaned frame
'''
date_flags = "Y"
# finds special characters in the string
special_char = re.findall(r'[a-zA-Z!\[\|]', date)
if len(special_char) > 0:
date_flags = special_char
# remove special characters in the string
string = re.sub(r'[a-zA-Z!\[\|]', '', date)
return string, date_flags
##### Main Function #####
def pdf_extract_gr(image):
extractimg = preprocess_image(image)
#extractimg = np.array(image)
# deskew the image
deskewed_image, angle, skew_confidence = deskew(extractimg, model_deskew)
# prepare the image for the autoencoder
cleanimg = prepare_image_to_autoencoder(deskewed_image)
# clean the image
img = autoencode_ONNX(cleanimg, model_denoise)
# extract the entries from the image
df = extract_detected_entries_pdl(img)
# first name
firstnamerow = df.iloc[0]
firstname = firstnamerow[0]
firstnameconfidence = round(float(firstnamerow[1]) * 100,3)
firstnameconfidence = f"{firstnameconfidence}%"
# surname
surnamerow = df.iloc[1]
surname = surnamerow[0]
surnameconfidence = round(float(surnamerow[1]) * 100,3)
surnameconfidence = f"{surnameconfidence}%"
# death date condifence
dodrow = df.iloc[2]
dodname = dodrow[0]
dodconfidence = round(float(dodrow[1]) * 100,3)
dodconfidence = f"{dodconfidence}%"
# return all the results
return df, deskewed_image, angle, skew_confidence, img, firstname, firstnameconfidence, surname, surnameconfidence, dodname, dodconfidence
##### Gradio Style #####
css = """
.run_container {
display: flex;
flex-direction: column;
align-items: center;
gap: 10px;
}
.run_btn {
margin: auto;
width: 50%;
display: flex;
}
.upload_cell {
margin: auto;
display: flex;
}
.results_container {
display: flex;
justify-content: space-evenly;
}
.results_cell {
}
"""
##### Gradio Blocks #####
with gr.Blocks(css = css) as demo:
gr.Markdown("""
# Death Certificate Extraction
""", elem_classes = "h1")
gr.Markdown("Upload a PDF, extract data")
with gr.Box(elem_classes = "run_container"):
# ExtractInput = gr.File(label = "Death Certificate", elem_classes="upload_cell")
ExtractButton = gr.Button(label = "Extract", elem_classes="run_btn")
with gr.Row(elem_id = "hide"):
with gr.Column():
ExtractInput = gr.Image()
with gr.Column():
# ExtractResult = gr.Image(label = "result")
with gr.Row(elem_classes = "results_container"):
FirstNameBox = gr.Textbox(label = "First Name", elem_classes = "results_cell")
FirstNameConfidenceBox = gr.Textbox(label = "First Name Confidence", elem_classes = "results_cell")
with gr.Row(elem_classes = "results_container"):
SurnameNameBox = gr.Textbox(label = "Surname", elem_classes = "results_cell")
SurnameNameConfidenceBox = gr.Textbox(label = "Surname Confidence", elem_classes = "results_cell")
with gr.Row(elem_classes = "results_container"):
DODBox = gr.Textbox(label = "Date of Death", elem_classes = "results_cell")
DODConfidenceBox = gr.Textbox(label = "Date of Death Confidence", elem_classes = "results_cell")
with gr.Accordion("Full Results", open = False):
ExtractDF = gr.Dataframe(label = "Results")
with gr.Accordion("Clean Image", open = False):
CleanOutput = gr.Image()
with gr.Accordion("Deskew", open = False):
DeskewOutput = gr.Image()
with gr.Column():
DeskewAngle = gr.Number(label = "Angle")
with gr.Column():
DeskewConfidence = gr.Number(label = "Confidence")
ExtractButton.click(fn=pdf_extract_gr,
inputs = ExtractInput,
outputs = [ExtractDF, DeskewOutput, DeskewAngle,
DeskewConfidence, CleanOutput, FirstNameBox,
FirstNameConfidenceBox, SurnameNameBox,
SurnameNameConfidenceBox, DODBox, DODConfidenceBox])
demo.launch(show_api=True, share=False, debug=True) |