File size: 1,103 Bytes
4de66a5
 
 
 
 
 
e88fa1a
4de66a5
e88fa1a
 
 
 
 
 
 
 
 
 
 
0d7c941
 
e88fa1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de66a5
e88fa1a
00aa8e0
b332329
 
e88fa1a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import gradio as gr

API_KEY=os.environ.get('HUGGING_FACE_HUB_TOKEN', None)
article = """---
This space was created using [SD Space Creator](https://huggingface.co/spaces/anzorq/sd-space-creator)."""
import gradio as gr

article = """---This space was created using [SD Space Creator](https://huggingface.co/spaces/anzorq/sd-space-creator)."""

MODLS=[
"models/ItsJayQz/Marvel_WhatIf_Diffusion",
"models/DGSpitzer/Cyberpunk-Anime-Diffusion",
"models/DGSpitzer/Guan-Yu-Diffusion",
"models/wavymulder/portraitplus",
"models/nitrosocke/classic-anim-diffusion",
"models/22h/vintedois-diffusion-v0-1",
"models/dreamlike-art/dreamlike-diffusion-1.0",
"models/stabilityai/stable-diffusion-2-1"
]

TXT="AlStable Demo"

def prediction(input_choice):
    return  gr.Image(input_choice)

def prediction(model_choice, input):
  modl = MODLS[model_choice]
  return modl

sandbox = gr.Interface(
    fn=prediction,
    inputs=gr.inputs.Dropdown(MODLS),
    outputs=gr.Image(),
    title=TXT,
    description=TXT,
    article=article,
    api_key=API_KEY    
)

sandbox.queue(concurrency_count=20).launch()