Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
from diffusers import FluxInpaintPipeline | |
import gradio as gr | |
import re | |
from PIL import Image,ImageFilter | |
import os | |
import numpy as np | |
def convert_to_fit_size(original_width_and_height, maximum_size = 2048): | |
width, height =original_width_and_height | |
if width <= maximum_size and height <= maximum_size: | |
return width,height | |
if width > height: | |
scaling_factor = maximum_size / width | |
else: | |
scaling_factor = maximum_size / height | |
new_width = int(width * scaling_factor) | |
new_height = int(height * scaling_factor) | |
return new_width, new_height | |
def adjust_to_multiple_of_32(width: int, height: int): | |
width = width - (width % 32) | |
height = height - (height % 32) | |
return width, height | |
def mask_to_donut(mask,size): | |
if size%2 ==0: | |
size+=1 | |
dilation_mask = mask.filter(ImageFilter.MaxFilter(size)) | |
white_img = Image.new('RGB', mask.size, (255,255,255)) | |
black_img = Image.new('RGB', mask.size, (0,0,0)) | |
white_img.paste(black_img,(0,0),dilation_mask.convert("L")) | |
white_img.paste(mask,(0,0),mask.convert("L")) | |
return white_img | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device) | |
def sanitize_prompt(prompt): | |
# Allow only alphanumeric characters, spaces, and basic punctuation | |
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]") | |
sanitized_prompt = allowed_chars.sub("", prompt) | |
return sanitized_prompt | |
def process_images(image, image2=None,prompt="a girl",inpaint_model="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,donut_mask=True,donut_size=32,progress=gr.Progress(track_tqdm=True)): | |
# I'm not sure when this happen | |
progress(0, desc="start-process-images") | |
#print("start-process-images") | |
if not isinstance(image, dict): | |
if image2 == None: | |
#print("empty mask") | |
return image,None | |
else: | |
image = dict({'background': image, 'layers': [image2]}) | |
if image2!=None: | |
#print("use image2") | |
mask = image2 | |
else: | |
if len(image['layers']) == 0: | |
#print("empty mask") | |
return image | |
#print("use layer") | |
mask = image['layers'][0] | |
def process_inpaint(image,mask_image,prompt="a person",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4): | |
if image == None: | |
return None | |
generators = [] | |
generator = torch.Generator("cuda").manual_seed(seed) | |
generators.append(generator) | |
fit_width,fit_height = convert_to_fit_size(image.size) | |
#print(f"fit {width}x{height}") | |
width,height = adjust_to_multiple_of_32(fit_width,fit_height) | |
#print(f"multiple {width}x{height}") | |
image = image.resize((width, height), Image.LANCZOS) | |
mask_image = mask_image.resize((width, height), Image.NEAREST) | |
mask_image = mask_image.convert("RGB") | |
output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator,strength=strength,width=width,height=height, | |
guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256) | |
return output.images[0],mask_image,image,fit_width,fit_height | |
if donut_mask: | |
original_mask = mask | |
mask = mask_to_donut(mask,donut_size) | |
#output,mask_image,image_resized,fit_width,fit_height=image["background"],mask,image["background"],512,512 | |
output,mask_image,image_resized,fit_width,fit_height = process_inpaint(image["background"],mask,prompt,inpaint_model,strength,seed) | |
if donut_mask: | |
mask = original_mask.resize(mask_image.size) | |
image_resized.paste(output,(0,0),mask.convert("L")) | |
output = image_resized.resize((fit_width,fit_height),Image.LANCZOS) | |
mask_image = mask.resize(output.size) | |
else: | |
output = output.resize((fit_width,fit_height),Image.LANCZOS) | |
mask_image = mask_image.resize(output.size) | |
return output,mask_image | |
def read_file(path: str) -> str: | |
with open(path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return content | |
css=""" | |
#col-left { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
#col-right { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
.grid-container { | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
gap:10px | |
} | |
.image { | |
width: 128px; | |
height: 128px; | |
object-fit: cover; | |
} | |
.text { | |
font-size: 16px; | |
} | |
""" | |
with gr.Blocks(css=css, elem_id="demo-container") as demo: | |
with gr.Column(): | |
gr.HTML(read_file("demo_header.html")) | |
gr.HTML(read_file("demo_tools.html")) | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.ImageEditor(height=800,sources=['upload','clipboard'],transforms=[],image_mode='RGB', layers=False, elem_id="image_upload", type="pil", label="Upload",brush=gr.Brush(colors=["#fff"], color_mode="fixed")) | |
with gr.Row(elem_id="prompt-container", equal_height=False): | |
prompt = gr.Textbox(label="Prompt",value="a person",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt") | |
with gr.Row(equal_height=True): | |
donut_mask = gr.Checkbox(label="Donut Mask",value=False,info="Usually improve result,but slow.Do second example things") | |
donut_size = gr.Slider(label="Donut Size",minimum=1,maximum=64,step=1,value=32,info="Larger value make extreamly slow") | |
btn = gr.Button("Inpaint", elem_id="run_button",variant="primary") | |
image_mask = gr.Image(sources=['upload','clipboard'], elem_id="mask_upload", type="pil", label="Mask_Upload",height=400, value=None) | |
with gr.Accordion(label="Advanced Settings", open=False): | |
with gr.Row( equal_height=True): | |
strength = gr.Number(value=0.75, minimum=0, maximum=1.0, step=0.01, label="Inpaint strength") | |
seed = gr.Number(value=0, minimum=0, step=1, label="Inpaint seed") | |
models = ["black-forest-labs/FLUX.1-schnell"] | |
inpaint_model = gr.Dropdown(label="modes", choices=models, value="black-forest-labs/FLUX.1-schnell") | |
id_input=gr.Text(label="Name", visible=False) | |
with gr.Column(): | |
image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="webp") | |
mask_out = gr.Image(height=800,sources=[],label="Mask", elem_id="mask-img",format="jpeg") | |
btn.click(fn=process_images, inputs=[image, image_mask,prompt,inpaint_model,strength,seed,donut_mask,donut_size], outputs =[image_out,mask_out], api_name='infer') | |
gr.Examples( | |
examples=[ | |
["examples/00538245.jpg", "examples/normal_mouth_mask.jpg","a beautiful girl,big-smile",0.75,"examples/normal_mouth_mask_result.jpg"], | |
["examples/00538245.jpg", "examples/expand_mouth_mask.jpg","a beautiful girl,big-smile",0.75,"examples/expand_mouth_mask_result.jpg"], | |
["examples/00547245_99.jpg", "examples/00547245_99_mask.jpg","a beautiful girl,eyes closed",0.75,"examples/00547245.jpg"], | |
["examples/00207245_18.jpg", "examples/00207245_18_mask.jpg","a beautiful girl,mouth opened",0.2,"examples/00207245.jpg"] | |
] | |
, | |
#fn=example_out, | |
inputs=[image,image_mask,prompt,strength,image_out], | |
#outputs=[test_out], | |
#cache_examples=False, | |
) | |
gr.HTML( | |
gr.HTML(read_file("demo_footer.html")) | |
) | |
if __name__ == "__main__": | |
demo.launch() | |