Spaces:
Running
Running
Akito-UzukiP
commited on
Commit
•
a5ffe22
0
Parent(s):
re_init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +35 -0
- .gitignore +168 -0
- .pre-commit-config.yaml +25 -0
- 1.4.3 +0 -0
- LICENSE +661 -0
- README.md +12 -0
- app.py +260 -0
- app0.py +344 -0
- attentions.py +464 -0
- bert/bert-base-japanese-v3/README.md +53 -0
- bert/bert-base-japanese-v3/config.json +19 -0
- bert/bert-base-japanese-v3/pytorch_model.bin +3 -0
- bert/bert-base-japanese-v3/tokenizer_config.json +10 -0
- bert/bert-base-japanese-v3/vocab.txt +0 -0
- bert/chinese-roberta-wwm-ext-large/.gitattributes +9 -0
- bert/chinese-roberta-wwm-ext-large/.gitignore +1 -0
- bert/chinese-roberta-wwm-ext-large/README.md +57 -0
- bert/chinese-roberta-wwm-ext-large/added_tokens.json +1 -0
- bert/chinese-roberta-wwm-ext-large/config.json +28 -0
- bert/chinese-roberta-wwm-ext-large/special_tokens_map.json +1 -0
- bert/chinese-roberta-wwm-ext-large/tokenizer.json +0 -0
- bert/chinese-roberta-wwm-ext-large/tokenizer_config.json +1 -0
- bert/chinese-roberta-wwm-ext-large/vocab.txt +0 -0
- bert_gen.py +61 -0
- commons.py +160 -0
- configs/config.json +197 -0
- data_utils.py +406 -0
- generation_logs.txt +0 -0
- logs/agnes_digital_爱丽数码_アグネスデジタル/G_10500.pth +3 -0
- logs/agnes_digital_爱丽数码_アグネスデジタル/config.json +95 -0
- logs/curren_chan_真机伶_カレンチャン/G_16000.pth +3 -0
- logs/curren_chan_真机伶_カレンチャン/config.json +95 -0
- logs/matikane_fukukitaru_待兼福来_マチカネフクキタル/DUR_10000.pth +3 -0
- logs/matikane_fukukitaru_待兼福来_マチカネフクキタル/G_10000.pth +3 -0
- logs/matikane_fukukitaru_待兼福来_マチカネフクキタル/config.json +95 -0
- logs/matikane_tannhauser_待兼诗歌剧_マチカネタンホイサ/G_20500.pth +3 -0
- logs/matikane_tannhauser_待兼诗歌剧_マチカネタンホイサ/config.json +95 -0
- logs/natuki/DUR_175000.pth +3 -0
- logs/natuki/DUR_61500.pth +3 -0
- logs/natuki/D_175000.pth +3 -0
- logs/natuki/D_61500.pth +3 -0
- logs/natuki/G_175000.pth +3 -0
- logs/natuki/G_61500.pth +3 -0
- logs/natuki/config.json +96 -0
- logs/rice_shower_米浴_ライスシャワー/G_16500.pth +3 -0
- logs/rice_shower_米浴_ライスシャワー/config.json +197 -0
- logs/satono_diamond_里见光钻_サトノダイヤモンド/G_10000.pth +3 -0
- logs/satono_diamond_里见光钻_サトノダイヤモンド/config.json +95 -0
- losses.py +58 -0
- mel_processing.py +139 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
.DS_Store
|
163 |
+
/models
|
164 |
+
|
165 |
+
filelists/*
|
166 |
+
!/filelists/esd.list
|
167 |
+
data/*
|
168 |
+
/infer_save
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v4.4.0
|
4 |
+
hooks:
|
5 |
+
- id: check-yaml
|
6 |
+
- id: end-of-file-fixer
|
7 |
+
- id: trailing-whitespace
|
8 |
+
|
9 |
+
- repo: https://github.com/astral-sh/ruff-pre-commit
|
10 |
+
rev: v0.0.292
|
11 |
+
hooks:
|
12 |
+
- id: ruff
|
13 |
+
args: [ --fix ]
|
14 |
+
|
15 |
+
- repo: https://github.com/psf/black
|
16 |
+
rev: 23.9.1
|
17 |
+
hooks:
|
18 |
+
- id: black
|
19 |
+
|
20 |
+
- repo: https://github.com/codespell-project/codespell
|
21 |
+
rev: v2.2.6
|
22 |
+
hooks:
|
23 |
+
- id: codespell
|
24 |
+
files: ^.*\.(py|md|rst|yml)$
|
25 |
+
args: [-L=fro]
|
1.4.3
ADDED
Binary file (330 Bytes). View file
|
|
LICENSE
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU AFFERO GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 19 November 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU Affero General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works, specifically designed to ensure
|
12 |
+
cooperation with the community in the case of network server software.
|
13 |
+
|
14 |
+
The licenses for most software and other practical works are designed
|
15 |
+
to take away your freedom to share and change the works. By contrast,
|
16 |
+
our General Public Licenses are intended to guarantee your freedom to
|
17 |
+
share and change all versions of a program--to make sure it remains free
|
18 |
+
software for all its users.
|
19 |
+
|
20 |
+
When we speak of free software, we are referring to freedom, not
|
21 |
+
price. Our General Public Licenses are designed to make sure that you
|
22 |
+
have the freedom to distribute copies of free software (and charge for
|
23 |
+
them if you wish), that you receive source code or can get it if you
|
24 |
+
want it, that you can change the software or use pieces of it in new
|
25 |
+
free programs, and that you know you can do these things.
|
26 |
+
|
27 |
+
Developers that use our General Public Licenses protect your rights
|
28 |
+
with two steps: (1) assert copyright on the software, and (2) offer
|
29 |
+
you this License which gives you legal permission to copy, distribute
|
30 |
+
and/or modify the software.
|
31 |
+
|
32 |
+
A secondary benefit of defending all users' freedom is that
|
33 |
+
improvements made in alternate versions of the program, if they
|
34 |
+
receive widespread use, become available for other developers to
|
35 |
+
incorporate. Many developers of free software are heartened and
|
36 |
+
encouraged by the resulting cooperation. However, in the case of
|
37 |
+
software used on network servers, this result may fail to come about.
|
38 |
+
The GNU General Public License permits making a modified version and
|
39 |
+
letting the public access it on a server without ever releasing its
|
40 |
+
source code to the public.
|
41 |
+
|
42 |
+
The GNU Affero General Public License is designed specifically to
|
43 |
+
ensure that, in such cases, the modified source code becomes available
|
44 |
+
to the community. It requires the operator of a network server to
|
45 |
+
provide the source code of the modified version running there to the
|
46 |
+
users of that server. Therefore, public use of a modified version, on
|
47 |
+
a publicly accessible server, gives the public access to the source
|
48 |
+
code of the modified version.
|
49 |
+
|
50 |
+
An older license, called the Affero General Public License and
|
51 |
+
published by Affero, was designed to accomplish similar goals. This is
|
52 |
+
a different license, not a version of the Affero GPL, but Affero has
|
53 |
+
released a new version of the Affero GPL which permits relicensing under
|
54 |
+
this license.
|
55 |
+
|
56 |
+
The precise terms and conditions for copying, distribution and
|
57 |
+
modification follow.
|
58 |
+
|
59 |
+
TERMS AND CONDITIONS
|
60 |
+
|
61 |
+
0. Definitions.
|
62 |
+
|
63 |
+
"This License" refers to version 3 of the GNU Affero General Public License.
|
64 |
+
|
65 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
66 |
+
works, such as semiconductor masks.
|
67 |
+
|
68 |
+
"The Program" refers to any copyrightable work licensed under this
|
69 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
70 |
+
"recipients" may be individuals or organizations.
|
71 |
+
|
72 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
73 |
+
in a fashion requiring copyright permission, other than the making of an
|
74 |
+
exact copy. The resulting work is called a "modified version" of the
|
75 |
+
earlier work or a work "based on" the earlier work.
|
76 |
+
|
77 |
+
A "covered work" means either the unmodified Program or a work based
|
78 |
+
on the Program.
|
79 |
+
|
80 |
+
To "propagate" a work means to do anything with it that, without
|
81 |
+
permission, would make you directly or secondarily liable for
|
82 |
+
infringement under applicable copyright law, except executing it on a
|
83 |
+
computer or modifying a private copy. Propagation includes copying,
|
84 |
+
distribution (with or without modification), making available to the
|
85 |
+
public, and in some countries other activities as well.
|
86 |
+
|
87 |
+
To "convey" a work means any kind of propagation that enables other
|
88 |
+
parties to make or receive copies. Mere interaction with a user through
|
89 |
+
a computer network, with no transfer of a copy, is not conveying.
|
90 |
+
|
91 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
92 |
+
to the extent that it includes a convenient and prominently visible
|
93 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
94 |
+
tells the user that there is no warranty for the work (except to the
|
95 |
+
extent that warranties are provided), that licensees may convey the
|
96 |
+
work under this License, and how to view a copy of this License. If
|
97 |
+
the interface presents a list of user commands or options, such as a
|
98 |
+
menu, a prominent item in the list meets this criterion.
|
99 |
+
|
100 |
+
1. Source Code.
|
101 |
+
|
102 |
+
The "source code" for a work means the preferred form of the work
|
103 |
+
for making modifications to it. "Object code" means any non-source
|
104 |
+
form of a work.
|
105 |
+
|
106 |
+
A "Standard Interface" means an interface that either is an official
|
107 |
+
standard defined by a recognized standards body, or, in the case of
|
108 |
+
interfaces specified for a particular programming language, one that
|
109 |
+
is widely used among developers working in that language.
|
110 |
+
|
111 |
+
The "System Libraries" of an executable work include anything, other
|
112 |
+
than the work as a whole, that (a) is included in the normal form of
|
113 |
+
packaging a Major Component, but which is not part of that Major
|
114 |
+
Component, and (b) serves only to enable use of the work with that
|
115 |
+
Major Component, or to implement a Standard Interface for which an
|
116 |
+
implementation is available to the public in source code form. A
|
117 |
+
"Major Component", in this context, means a major essential component
|
118 |
+
(kernel, window system, and so on) of the specific operating system
|
119 |
+
(if any) on which the executable work runs, or a compiler used to
|
120 |
+
produce the work, or an object code interpreter used to run it.
|
121 |
+
|
122 |
+
The "Corresponding Source" for a work in object code form means all
|
123 |
+
the source code needed to generate, install, and (for an executable
|
124 |
+
work) run the object code and to modify the work, including scripts to
|
125 |
+
control those activities. However, it does not include the work's
|
126 |
+
System Libraries, or general-purpose tools or generally available free
|
127 |
+
programs which are used unmodified in performing those activities but
|
128 |
+
which are not part of the work. For example, Corresponding Source
|
129 |
+
includes interface definition files associated with source files for
|
130 |
+
the work, and the source code for shared libraries and dynamically
|
131 |
+
linked subprograms that the work is specifically designed to require,
|
132 |
+
such as by intimate data communication or control flow between those
|
133 |
+
subprograms and other parts of the work.
|
134 |
+
|
135 |
+
The Corresponding Source need not include anything that users
|
136 |
+
can regenerate automatically from other parts of the Corresponding
|
137 |
+
Source.
|
138 |
+
|
139 |
+
The Corresponding Source for a work in source code form is that
|
140 |
+
same work.
|
141 |
+
|
142 |
+
2. Basic Permissions.
|
143 |
+
|
144 |
+
All rights granted under this License are granted for the term of
|
145 |
+
copyright on the Program, and are irrevocable provided the stated
|
146 |
+
conditions are met. This License explicitly affirms your unlimited
|
147 |
+
permission to run the unmodified Program. The output from running a
|
148 |
+
covered work is covered by this License only if the output, given its
|
149 |
+
content, constitutes a covered work. This License acknowledges your
|
150 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
151 |
+
|
152 |
+
You may make, run and propagate covered works that you do not
|
153 |
+
convey, without conditions so long as your license otherwise remains
|
154 |
+
in force. You may convey covered works to others for the sole purpose
|
155 |
+
of having them make modifications exclusively for you, or provide you
|
156 |
+
with facilities for running those works, provided that you comply with
|
157 |
+
the terms of this License in conveying all material for which you do
|
158 |
+
not control copyright. Those thus making or running the covered works
|
159 |
+
for you must do so exclusively on your behalf, under your direction
|
160 |
+
and control, on terms that prohibit them from making any copies of
|
161 |
+
your copyrighted material outside their relationship with you.
|
162 |
+
|
163 |
+
Conveying under any other circumstances is permitted solely under
|
164 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
165 |
+
makes it unnecessary.
|
166 |
+
|
167 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
168 |
+
|
169 |
+
No covered work shall be deemed part of an effective technological
|
170 |
+
measure under any applicable law fulfilling obligations under article
|
171 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
172 |
+
similar laws prohibiting or restricting circumvention of such
|
173 |
+
measures.
|
174 |
+
|
175 |
+
When you convey a covered work, you waive any legal power to forbid
|
176 |
+
circumvention of technological measures to the extent such circumvention
|
177 |
+
is effected by exercising rights under this License with respect to
|
178 |
+
the covered work, and you disclaim any intention to limit operation or
|
179 |
+
modification of the work as a means of enforcing, against the work's
|
180 |
+
users, your or third parties' legal rights to forbid circumvention of
|
181 |
+
technological measures.
|
182 |
+
|
183 |
+
4. Conveying Verbatim Copies.
|
184 |
+
|
185 |
+
You may convey verbatim copies of the Program's source code as you
|
186 |
+
receive it, in any medium, provided that you conspicuously and
|
187 |
+
appropriately publish on each copy an appropriate copyright notice;
|
188 |
+
keep intact all notices stating that this License and any
|
189 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
190 |
+
keep intact all notices of the absence of any warranty; and give all
|
191 |
+
recipients a copy of this License along with the Program.
|
192 |
+
|
193 |
+
You may charge any price or no price for each copy that you convey,
|
194 |
+
and you may offer support or warranty protection for a fee.
|
195 |
+
|
196 |
+
5. Conveying Modified Source Versions.
|
197 |
+
|
198 |
+
You may convey a work based on the Program, or the modifications to
|
199 |
+
produce it from the Program, in the form of source code under the
|
200 |
+
terms of section 4, provided that you also meet all of these conditions:
|
201 |
+
|
202 |
+
a) The work must carry prominent notices stating that you modified
|
203 |
+
it, and giving a relevant date.
|
204 |
+
|
205 |
+
b) The work must carry prominent notices stating that it is
|
206 |
+
released under this License and any conditions added under section
|
207 |
+
7. This requirement modifies the requirement in section 4 to
|
208 |
+
"keep intact all notices".
|
209 |
+
|
210 |
+
c) You must license the entire work, as a whole, under this
|
211 |
+
License to anyone who comes into possession of a copy. This
|
212 |
+
License will therefore apply, along with any applicable section 7
|
213 |
+
additional terms, to the whole of the work, and all its parts,
|
214 |
+
regardless of how they are packaged. This License gives no
|
215 |
+
permission to license the work in any other way, but it does not
|
216 |
+
invalidate such permission if you have separately received it.
|
217 |
+
|
218 |
+
d) If the work has interactive user interfaces, each must display
|
219 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
220 |
+
interfaces that do not display Appropriate Legal Notices, your
|
221 |
+
work need not make them do so.
|
222 |
+
|
223 |
+
A compilation of a covered work with other separate and independent
|
224 |
+
works, which are not by their nature extensions of the covered work,
|
225 |
+
and which are not combined with it such as to form a larger program,
|
226 |
+
in or on a volume of a storage or distribution medium, is called an
|
227 |
+
"aggregate" if the compilation and its resulting copyright are not
|
228 |
+
used to limit the access or legal rights of the compilation's users
|
229 |
+
beyond what the individual works permit. Inclusion of a covered work
|
230 |
+
in an aggregate does not cause this License to apply to the other
|
231 |
+
parts of the aggregate.
|
232 |
+
|
233 |
+
6. Conveying Non-Source Forms.
|
234 |
+
|
235 |
+
You may convey a covered work in object code form under the terms
|
236 |
+
of sections 4 and 5, provided that you also convey the
|
237 |
+
machine-readable Corresponding Source under the terms of this License,
|
238 |
+
in one of these ways:
|
239 |
+
|
240 |
+
a) Convey the object code in, or embodied in, a physical product
|
241 |
+
(including a physical distribution medium), accompanied by the
|
242 |
+
Corresponding Source fixed on a durable physical medium
|
243 |
+
customarily used for software interchange.
|
244 |
+
|
245 |
+
b) Convey the object code in, or embodied in, a physical product
|
246 |
+
(including a physical distribution medium), accompanied by a
|
247 |
+
written offer, valid for at least three years and valid for as
|
248 |
+
long as you offer spare parts or customer support for that product
|
249 |
+
model, to give anyone who possesses the object code either (1) a
|
250 |
+
copy of the Corresponding Source for all the software in the
|
251 |
+
product that is covered by this License, on a durable physical
|
252 |
+
medium customarily used for software interchange, for a price no
|
253 |
+
more than your reasonable cost of physically performing this
|
254 |
+
conveying of source, or (2) access to copy the
|
255 |
+
Corresponding Source from a network server at no charge.
|
256 |
+
|
257 |
+
c) Convey individual copies of the object code with a copy of the
|
258 |
+
written offer to provide the Corresponding Source. This
|
259 |
+
alternative is allowed only occasionally and noncommercially, and
|
260 |
+
only if you received the object code with such an offer, in accord
|
261 |
+
with subsection 6b.
|
262 |
+
|
263 |
+
d) Convey the object code by offering access from a designated
|
264 |
+
place (gratis or for a charge), and offer equivalent access to the
|
265 |
+
Corresponding Source in the same way through the same place at no
|
266 |
+
further charge. You need not require recipients to copy the
|
267 |
+
Corresponding Source along with the object code. If the place to
|
268 |
+
copy the object code is a network server, the Corresponding Source
|
269 |
+
may be on a different server (operated by you or a third party)
|
270 |
+
that supports equivalent copying facilities, provided you maintain
|
271 |
+
clear directions next to the object code saying where to find the
|
272 |
+
Corresponding Source. Regardless of what server hosts the
|
273 |
+
Corresponding Source, you remain obligated to ensure that it is
|
274 |
+
available for as long as needed to satisfy these requirements.
|
275 |
+
|
276 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
277 |
+
you inform other peers where the object code and Corresponding
|
278 |
+
Source of the work are being offered to the general public at no
|
279 |
+
charge under subsection 6d.
|
280 |
+
|
281 |
+
A separable portion of the object code, whose source code is excluded
|
282 |
+
from the Corresponding Source as a System Library, need not be
|
283 |
+
included in conveying the object code work.
|
284 |
+
|
285 |
+
A "User Product" is either (1) a "consumer product", which means any
|
286 |
+
tangible personal property which is normally used for personal, family,
|
287 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
288 |
+
into a dwelling. In determining whether a product is a consumer product,
|
289 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
290 |
+
product received by a particular user, "normally used" refers to a
|
291 |
+
typical or common use of that class of product, regardless of the status
|
292 |
+
of the particular user or of the way in which the particular user
|
293 |
+
actually uses, or expects or is expected to use, the product. A product
|
294 |
+
is a consumer product regardless of whether the product has substantial
|
295 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
296 |
+
the only significant mode of use of the product.
|
297 |
+
|
298 |
+
"Installation Information" for a User Product means any methods,
|
299 |
+
procedures, authorization keys, or other information required to install
|
300 |
+
and execute modified versions of a covered work in that User Product from
|
301 |
+
a modified version of its Corresponding Source. The information must
|
302 |
+
suffice to ensure that the continued functioning of the modified object
|
303 |
+
code is in no case prevented or interfered with solely because
|
304 |
+
modification has been made.
|
305 |
+
|
306 |
+
If you convey an object code work under this section in, or with, or
|
307 |
+
specifically for use in, a User Product, and the conveying occurs as
|
308 |
+
part of a transaction in which the right of possession and use of the
|
309 |
+
User Product is transferred to the recipient in perpetuity or for a
|
310 |
+
fixed term (regardless of how the transaction is characterized), the
|
311 |
+
Corresponding Source conveyed under this section must be accompanied
|
312 |
+
by the Installation Information. But this requirement does not apply
|
313 |
+
if neither you nor any third party retains the ability to install
|
314 |
+
modified object code on the User Product (for example, the work has
|
315 |
+
been installed in ROM).
|
316 |
+
|
317 |
+
The requirement to provide Installation Information does not include a
|
318 |
+
requirement to continue to provide support service, warranty, or updates
|
319 |
+
for a work that has been modified or installed by the recipient, or for
|
320 |
+
the User Product in which it has been modified or installed. Access to a
|
321 |
+
network may be denied when the modification itself materially and
|
322 |
+
adversely affects the operation of the network or violates the rules and
|
323 |
+
protocols for communication across the network.
|
324 |
+
|
325 |
+
Corresponding Source conveyed, and Installation Information provided,
|
326 |
+
in accord with this section must be in a format that is publicly
|
327 |
+
documented (and with an implementation available to the public in
|
328 |
+
source code form), and must require no special password or key for
|
329 |
+
unpacking, reading or copying.
|
330 |
+
|
331 |
+
7. Additional Terms.
|
332 |
+
|
333 |
+
"Additional permissions" are terms that supplement the terms of this
|
334 |
+
License by making exceptions from one or more of its conditions.
|
335 |
+
Additional permissions that are applicable to the entire Program shall
|
336 |
+
be treated as though they were included in this License, to the extent
|
337 |
+
that they are valid under applicable law. If additional permissions
|
338 |
+
apply only to part of the Program, that part may be used separately
|
339 |
+
under those permissions, but the entire Program remains governed by
|
340 |
+
this License without regard to the additional permissions.
|
341 |
+
|
342 |
+
When you convey a copy of a covered work, you may at your option
|
343 |
+
remove any additional permissions from that copy, or from any part of
|
344 |
+
it. (Additional permissions may be written to require their own
|
345 |
+
removal in certain cases when you modify the work.) You may place
|
346 |
+
additional permissions on material, added by you to a covered work,
|
347 |
+
for which you have or can give appropriate copyright permission.
|
348 |
+
|
349 |
+
Notwithstanding any other provision of this License, for material you
|
350 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
351 |
+
that material) supplement the terms of this License with terms:
|
352 |
+
|
353 |
+
a) Disclaiming warranty or limiting liability differently from the
|
354 |
+
terms of sections 15 and 16 of this License; or
|
355 |
+
|
356 |
+
b) Requiring preservation of specified reasonable legal notices or
|
357 |
+
author attributions in that material or in the Appropriate Legal
|
358 |
+
Notices displayed by works containing it; or
|
359 |
+
|
360 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
361 |
+
requiring that modified versions of such material be marked in
|
362 |
+
reasonable ways as different from the original version; or
|
363 |
+
|
364 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
365 |
+
authors of the material; or
|
366 |
+
|
367 |
+
e) Declining to grant rights under trademark law for use of some
|
368 |
+
trade names, trademarks, or service marks; or
|
369 |
+
|
370 |
+
f) Requiring indemnification of licensors and authors of that
|
371 |
+
material by anyone who conveys the material (or modified versions of
|
372 |
+
it) with contractual assumptions of liability to the recipient, for
|
373 |
+
any liability that these contractual assumptions directly impose on
|
374 |
+
those licensors and authors.
|
375 |
+
|
376 |
+
All other non-permissive additional terms are considered "further
|
377 |
+
restrictions" within the meaning of section 10. If the Program as you
|
378 |
+
received it, or any part of it, contains a notice stating that it is
|
379 |
+
governed by this License along with a term that is a further
|
380 |
+
restriction, you may remove that term. If a license document contains
|
381 |
+
a further restriction but permits relicensing or conveying under this
|
382 |
+
License, you may add to a covered work material governed by the terms
|
383 |
+
of that license document, provided that the further restriction does
|
384 |
+
not survive such relicensing or conveying.
|
385 |
+
|
386 |
+
If you add terms to a covered work in accord with this section, you
|
387 |
+
must place, in the relevant source files, a statement of the
|
388 |
+
additional terms that apply to those files, or a notice indicating
|
389 |
+
where to find the applicable terms.
|
390 |
+
|
391 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
392 |
+
form of a separately written license, or stated as exceptions;
|
393 |
+
the above requirements apply either way.
|
394 |
+
|
395 |
+
8. Termination.
|
396 |
+
|
397 |
+
You may not propagate or modify a covered work except as expressly
|
398 |
+
provided under this License. Any attempt otherwise to propagate or
|
399 |
+
modify it is void, and will automatically terminate your rights under
|
400 |
+
this License (including any patent licenses granted under the third
|
401 |
+
paragraph of section 11).
|
402 |
+
|
403 |
+
However, if you cease all violation of this License, then your
|
404 |
+
license from a particular copyright holder is reinstated (a)
|
405 |
+
provisionally, unless and until the copyright holder explicitly and
|
406 |
+
finally terminates your license, and (b) permanently, if the copyright
|
407 |
+
holder fails to notify you of the violation by some reasonable means
|
408 |
+
prior to 60 days after the cessation.
|
409 |
+
|
410 |
+
Moreover, your license from a particular copyright holder is
|
411 |
+
reinstated permanently if the copyright holder notifies you of the
|
412 |
+
violation by some reasonable means, this is the first time you have
|
413 |
+
received notice of violation of this License (for any work) from that
|
414 |
+
copyright holder, and you cure the violation prior to 30 days after
|
415 |
+
your receipt of the notice.
|
416 |
+
|
417 |
+
Termination of your rights under this section does not terminate the
|
418 |
+
licenses of parties who have received copies or rights from you under
|
419 |
+
this License. If your rights have been terminated and not permanently
|
420 |
+
reinstated, you do not qualify to receive new licenses for the same
|
421 |
+
material under section 10.
|
422 |
+
|
423 |
+
9. Acceptance Not Required for Having Copies.
|
424 |
+
|
425 |
+
You are not required to accept this License in order to receive or
|
426 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
427 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
428 |
+
to receive a copy likewise does not require acceptance. However,
|
429 |
+
nothing other than this License grants you permission to propagate or
|
430 |
+
modify any covered work. These actions infringe copyright if you do
|
431 |
+
not accept this License. Therefore, by modifying or propagating a
|
432 |
+
covered work, you indicate your acceptance of this License to do so.
|
433 |
+
|
434 |
+
10. Automatic Licensing of Downstream Recipients.
|
435 |
+
|
436 |
+
Each time you convey a covered work, the recipient automatically
|
437 |
+
receives a license from the original licensors, to run, modify and
|
438 |
+
propagate that work, subject to this License. You are not responsible
|
439 |
+
for enforcing compliance by third parties with this License.
|
440 |
+
|
441 |
+
An "entity transaction" is a transaction transferring control of an
|
442 |
+
organization, or substantially all assets of one, or subdividing an
|
443 |
+
organization, or merging organizations. If propagation of a covered
|
444 |
+
work results from an entity transaction, each party to that
|
445 |
+
transaction who receives a copy of the work also receives whatever
|
446 |
+
licenses to the work the party's predecessor in interest had or could
|
447 |
+
give under the previous paragraph, plus a right to possession of the
|
448 |
+
Corresponding Source of the work from the predecessor in interest, if
|
449 |
+
the predecessor has it or can get it with reasonable efforts.
|
450 |
+
|
451 |
+
You may not impose any further restrictions on the exercise of the
|
452 |
+
rights granted or affirmed under this License. For example, you may
|
453 |
+
not impose a license fee, royalty, or other charge for exercise of
|
454 |
+
rights granted under this License, and you may not initiate litigation
|
455 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
456 |
+
any patent claim is infringed by making, using, selling, offering for
|
457 |
+
sale, or importing the Program or any portion of it.
|
458 |
+
|
459 |
+
11. Patents.
|
460 |
+
|
461 |
+
A "contributor" is a copyright holder who authorizes use under this
|
462 |
+
License of the Program or a work on which the Program is based. The
|
463 |
+
work thus licensed is called the contributor's "contributor version".
|
464 |
+
|
465 |
+
A contributor's "essential patent claims" are all patent claims
|
466 |
+
owned or controlled by the contributor, whether already acquired or
|
467 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
468 |
+
by this License, of making, using, or selling its contributor version,
|
469 |
+
but do not include claims that would be infringed only as a
|
470 |
+
consequence of further modification of the contributor version. For
|
471 |
+
purposes of this definition, "control" includes the right to grant
|
472 |
+
patent sublicenses in a manner consistent with the requirements of
|
473 |
+
this License.
|
474 |
+
|
475 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
476 |
+
patent license under the contributor's essential patent claims, to
|
477 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
478 |
+
propagate the contents of its contributor version.
|
479 |
+
|
480 |
+
In the following three paragraphs, a "patent license" is any express
|
481 |
+
agreement or commitment, however denominated, not to enforce a patent
|
482 |
+
(such as an express permission to practice a patent or covenant not to
|
483 |
+
sue for patent infringement). To "grant" such a patent license to a
|
484 |
+
party means to make such an agreement or commitment not to enforce a
|
485 |
+
patent against the party.
|
486 |
+
|
487 |
+
If you convey a covered work, knowingly relying on a patent license,
|
488 |
+
and the Corresponding Source of the work is not available for anyone
|
489 |
+
to copy, free of charge and under the terms of this License, through a
|
490 |
+
publicly available network server or other readily accessible means,
|
491 |
+
then you must either (1) cause the Corresponding Source to be so
|
492 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
493 |
+
patent license for this particular work, or (3) arrange, in a manner
|
494 |
+
consistent with the requirements of this License, to extend the patent
|
495 |
+
license to downstream recipients. "Knowingly relying" means you have
|
496 |
+
actual knowledge that, but for the patent license, your conveying the
|
497 |
+
covered work in a country, or your recipient's use of the covered work
|
498 |
+
in a country, would infringe one or more identifiable patents in that
|
499 |
+
country that you have reason to believe are valid.
|
500 |
+
|
501 |
+
If, pursuant to or in connection with a single transaction or
|
502 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
503 |
+
covered work, and grant a patent license to some of the parties
|
504 |
+
receiving the covered work authorizing them to use, propagate, modify
|
505 |
+
or convey a specific copy of the covered work, then the patent license
|
506 |
+
you grant is automatically extended to all recipients of the covered
|
507 |
+
work and works based on it.
|
508 |
+
|
509 |
+
A patent license is "discriminatory" if it does not include within
|
510 |
+
the scope of its coverage, prohibits the exercise of, or is
|
511 |
+
conditioned on the non-exercise of one or more of the rights that are
|
512 |
+
specifically granted under this License. You may not convey a covered
|
513 |
+
work if you are a party to an arrangement with a third party that is
|
514 |
+
in the business of distributing software, under which you make payment
|
515 |
+
to the third party based on the extent of your activity of conveying
|
516 |
+
the work, and under which the third party grants, to any of the
|
517 |
+
parties who would receive the covered work from you, a discriminatory
|
518 |
+
patent license (a) in connection with copies of the covered work
|
519 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
520 |
+
for and in connection with specific products or compilations that
|
521 |
+
contain the covered work, unless you entered into that arrangement,
|
522 |
+
or that patent license was granted, prior to 28 March 2007.
|
523 |
+
|
524 |
+
Nothing in this License shall be construed as excluding or limiting
|
525 |
+
any implied license or other defenses to infringement that may
|
526 |
+
otherwise be available to you under applicable patent law.
|
527 |
+
|
528 |
+
12. No Surrender of Others' Freedom.
|
529 |
+
|
530 |
+
If conditions are imposed on you (whether by court order, agreement or
|
531 |
+
otherwise) that contradict the conditions of this License, they do not
|
532 |
+
excuse you from the conditions of this License. If you cannot convey a
|
533 |
+
covered work so as to satisfy simultaneously your obligations under this
|
534 |
+
License and any other pertinent obligations, then as a consequence you may
|
535 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
536 |
+
to collect a royalty for further conveying from those to whom you convey
|
537 |
+
the Program, the only way you could satisfy both those terms and this
|
538 |
+
License would be to refrain entirely from conveying the Program.
|
539 |
+
|
540 |
+
13. Remote Network Interaction; Use with the GNU General Public License.
|
541 |
+
|
542 |
+
Notwithstanding any other provision of this License, if you modify the
|
543 |
+
Program, your modified version must prominently offer all users
|
544 |
+
interacting with it remotely through a computer network (if your version
|
545 |
+
supports such interaction) an opportunity to receive the Corresponding
|
546 |
+
Source of your version by providing access to the Corresponding Source
|
547 |
+
from a network server at no charge, through some standard or customary
|
548 |
+
means of facilitating copying of software. This Corresponding Source
|
549 |
+
shall include the Corresponding Source for any work covered by version 3
|
550 |
+
of the GNU General Public License that is incorporated pursuant to the
|
551 |
+
following paragraph.
|
552 |
+
|
553 |
+
Notwithstanding any other provision of this License, you have
|
554 |
+
permission to link or combine any covered work with a work licensed
|
555 |
+
under version 3 of the GNU General Public License into a single
|
556 |
+
combined work, and to convey the resulting work. The terms of this
|
557 |
+
License will continue to apply to the part which is the covered work,
|
558 |
+
but the work with which it is combined will remain governed by version
|
559 |
+
3 of the GNU General Public License.
|
560 |
+
|
561 |
+
14. Revised Versions of this License.
|
562 |
+
|
563 |
+
The Free Software Foundation may publish revised and/or new versions of
|
564 |
+
the GNU Affero General Public License from time to time. Such new versions
|
565 |
+
will be similar in spirit to the present version, but may differ in detail to
|
566 |
+
address new problems or concerns.
|
567 |
+
|
568 |
+
Each version is given a distinguishing version number. If the
|
569 |
+
Program specifies that a certain numbered version of the GNU Affero General
|
570 |
+
Public License "or any later version" applies to it, you have the
|
571 |
+
option of following the terms and conditions either of that numbered
|
572 |
+
version or of any later version published by the Free Software
|
573 |
+
Foundation. If the Program does not specify a version number of the
|
574 |
+
GNU Affero General Public License, you may choose any version ever published
|
575 |
+
by the Free Software Foundation.
|
576 |
+
|
577 |
+
If the Program specifies that a proxy can decide which future
|
578 |
+
versions of the GNU Affero General Public License can be used, that proxy's
|
579 |
+
public statement of acceptance of a version permanently authorizes you
|
580 |
+
to choose that version for the Program.
|
581 |
+
|
582 |
+
Later license versions may give you additional or different
|
583 |
+
permissions. However, no additional obligations are imposed on any
|
584 |
+
author or copyright holder as a result of your choosing to follow a
|
585 |
+
later version.
|
586 |
+
|
587 |
+
15. Disclaimer of Warranty.
|
588 |
+
|
589 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
590 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
591 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
592 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
593 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
594 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
595 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
596 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
597 |
+
|
598 |
+
16. Limitation of Liability.
|
599 |
+
|
600 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
601 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
602 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
603 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
604 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
605 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
606 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
607 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
608 |
+
SUCH DAMAGES.
|
609 |
+
|
610 |
+
17. Interpretation of Sections 15 and 16.
|
611 |
+
|
612 |
+
If the disclaimer of warranty and limitation of liability provided
|
613 |
+
above cannot be given local legal effect according to their terms,
|
614 |
+
reviewing courts shall apply local law that most closely approximates
|
615 |
+
an absolute waiver of all civil liability in connection with the
|
616 |
+
Program, unless a warranty or assumption of liability accompanies a
|
617 |
+
copy of the Program in return for a fee.
|
618 |
+
|
619 |
+
END OF TERMS AND CONDITIONS
|
620 |
+
|
621 |
+
How to Apply These Terms to Your New Programs
|
622 |
+
|
623 |
+
If you develop a new program, and you want it to be of the greatest
|
624 |
+
possible use to the public, the best way to achieve this is to make it
|
625 |
+
free software which everyone can redistribute and change under these terms.
|
626 |
+
|
627 |
+
To do so, attach the following notices to the program. It is safest
|
628 |
+
to attach them to the start of each source file to most effectively
|
629 |
+
state the exclusion of warranty; and each file should have at least
|
630 |
+
the "copyright" line and a pointer to where the full notice is found.
|
631 |
+
|
632 |
+
<one line to give the program's name and a brief idea of what it does.>
|
633 |
+
Copyright (C) <year> <name of author>
|
634 |
+
|
635 |
+
This program is free software: you can redistribute it and/or modify
|
636 |
+
it under the terms of the GNU Affero General Public License as published
|
637 |
+
by the Free Software Foundation, either version 3 of the License, or
|
638 |
+
(at your option) any later version.
|
639 |
+
|
640 |
+
This program is distributed in the hope that it will be useful,
|
641 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
642 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
643 |
+
GNU Affero General Public License for more details.
|
644 |
+
|
645 |
+
You should have received a copy of the GNU Affero General Public License
|
646 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
647 |
+
|
648 |
+
Also add information on how to contact you by electronic and paper mail.
|
649 |
+
|
650 |
+
If your software can interact with users remotely through a computer
|
651 |
+
network, you should also make sure that it provides a way for users to
|
652 |
+
get its source. For example, if your program is a web application, its
|
653 |
+
interface could display a "Source" link that leads users to an archive
|
654 |
+
of the code. There are many ways you could offer source, and different
|
655 |
+
solutions will be better for different programs; see section 13 for the
|
656 |
+
specific requirements.
|
657 |
+
|
658 |
+
You should also get your employer (if you work as a programmer) or school,
|
659 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
660 |
+
For more information on this, and how to apply and follow the GNU AGPL, see
|
661 |
+
<https://www.gnu.org/licenses/>.
|
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Umamusume Bert Vits2
|
3 |
+
emoji: 📊
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.47.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: E402
|
2 |
+
|
3 |
+
import sys, os
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
import numpy as np # 假设你使用NumPy来处理音频数据
|
8 |
+
import shutil # 用于删除文件夹和文件
|
9 |
+
from scipy.io import wavfile
|
10 |
+
import re
|
11 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
12 |
+
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
13 |
+
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
14 |
+
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
15 |
+
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
|
18 |
+
)
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import argparse
|
24 |
+
import commons
|
25 |
+
import utils
|
26 |
+
from models import SynthesizerTrn
|
27 |
+
from text.symbols import symbols
|
28 |
+
from text import cleaned_text_to_sequence, get_bert
|
29 |
+
from text.cleaner import clean_text
|
30 |
+
import gradio as gr
|
31 |
+
import webbrowser
|
32 |
+
import numpy as np
|
33 |
+
|
34 |
+
net_g = None
|
35 |
+
device = "cuda"
|
36 |
+
curr_model_name:str = None
|
37 |
+
hps_:tuple = None
|
38 |
+
def get_text(text, language_str, hps):
|
39 |
+
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
40 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
41 |
+
|
42 |
+
if hps.data.add_blank:
|
43 |
+
phone = commons.intersperse(phone, 0)
|
44 |
+
tone = commons.intersperse(tone, 0)
|
45 |
+
language = commons.intersperse(language, 0)
|
46 |
+
for i in range(len(word2ph)):
|
47 |
+
word2ph[i] = word2ph[i] * 2
|
48 |
+
word2ph[0] += 1
|
49 |
+
bert = get_bert(norm_text, word2ph, language_str, device)
|
50 |
+
del word2ph
|
51 |
+
assert bert.shape[-1] == len(phone), phone
|
52 |
+
|
53 |
+
if language_str == "ZH":
|
54 |
+
bert = bert
|
55 |
+
ja_bert = torch.zeros(768, len(phone))
|
56 |
+
elif language_str == "JP":
|
57 |
+
ja_bert = bert
|
58 |
+
bert = torch.zeros(1024, len(phone))
|
59 |
+
else:
|
60 |
+
bert = torch.zeros(1024, len(phone))
|
61 |
+
ja_bert = torch.zeros(768, len(phone))
|
62 |
+
|
63 |
+
assert bert.shape[-1] == len(
|
64 |
+
phone
|
65 |
+
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
66 |
+
|
67 |
+
phone = torch.LongTensor(phone)
|
68 |
+
tone = torch.LongTensor(tone)
|
69 |
+
language = torch.LongTensor(language)
|
70 |
+
return bert, ja_bert, phone, tone, language
|
71 |
+
|
72 |
+
|
73 |
+
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
|
74 |
+
global net_g
|
75 |
+
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
|
76 |
+
with torch.no_grad():
|
77 |
+
x_tst = phones.to(device).unsqueeze(0)
|
78 |
+
tones = tones.to(device).unsqueeze(0)
|
79 |
+
lang_ids = lang_ids.to(device).unsqueeze(0)
|
80 |
+
bert = bert.to(device).unsqueeze(0)
|
81 |
+
ja_bert = ja_bert.to(device).unsqueeze(0)
|
82 |
+
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
83 |
+
#print(x_tst.type(), tones.type(), lang_ids.type(), bert.type(), ja_bert.type(), x_tst_lengths.type())
|
84 |
+
del phones
|
85 |
+
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
|
86 |
+
audio = (
|
87 |
+
net_g.infer(
|
88 |
+
x_tst,
|
89 |
+
x_tst_lengths,
|
90 |
+
speakers,
|
91 |
+
tones,
|
92 |
+
lang_ids,
|
93 |
+
bert,
|
94 |
+
ja_bert,
|
95 |
+
sdp_ratio=sdp_ratio,
|
96 |
+
noise_scale=noise_scale,
|
97 |
+
noise_scale_w=noise_scale_w,
|
98 |
+
length_scale=length_scale,
|
99 |
+
)[0][0, 0]
|
100 |
+
.data.cpu()
|
101 |
+
.float()
|
102 |
+
.numpy()
|
103 |
+
)
|
104 |
+
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
|
105 |
+
torch.cuda.empty_cache()
|
106 |
+
return audio
|
107 |
+
|
108 |
+
__LOG__ = "./generation_logs.txt"
|
109 |
+
def tts_fn(text, model_name:str, sdp_ratio, noise_scale, noise_scale_w, length_scale, language):
|
110 |
+
global curr_model_name
|
111 |
+
if curr_model_name != model_name:
|
112 |
+
load_model(model_name)
|
113 |
+
# 清空 ./infer_save 文件夹
|
114 |
+
if os.path.exists('./infer_save'):
|
115 |
+
shutil.rmtree('./infer_save')
|
116 |
+
os.makedirs('./infer_save')
|
117 |
+
|
118 |
+
slices = text.split("\n")
|
119 |
+
slices = [slice for slice in slices if slice.strip() != ""]
|
120 |
+
audio_list = []
|
121 |
+
with torch.no_grad():
|
122 |
+
with open(__LOG__,"a",encoding="UTF-8") as f:
|
123 |
+
for slice in slices:
|
124 |
+
assert len(slice) < 250 # 限制输入的文本长度
|
125 |
+
audio = infer(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=list(hps_[curr_model_name].data.spk2id.keys())[0], language=language)
|
126 |
+
audio_list.append(audio)
|
127 |
+
|
128 |
+
# 创建唯一的文件名
|
129 |
+
timestamp = str(int(time.time() * 1000))
|
130 |
+
audio_file_path = f'./infer_save/audio_{timestamp}.wav'
|
131 |
+
|
132 |
+
# 保存音频数据到.wav文件
|
133 |
+
wavfile.write(audio_file_path, hps.data.sampling_rate, audio)
|
134 |
+
|
135 |
+
silence = np.zeros(int(hps.data.sampling_rate/2), dtype=np.int16) # 生成半秒的静音
|
136 |
+
audio_list.append(silence) # 将静音添加到列表中
|
137 |
+
|
138 |
+
f.write(f"{slice} | {curr_model_name}\n")
|
139 |
+
print(f"{slice} | {curr_model_name}")
|
140 |
+
|
141 |
+
audio_concat = np.concatenate(audio_list)
|
142 |
+
return "Success", (hps.data.sampling_rate, audio_concat)
|
143 |
+
|
144 |
+
|
145 |
+
def load_model(model_name:str):
|
146 |
+
global net_g,curr_model_name,hps_,hps
|
147 |
+
assert os.path.exists(os.path.join("logs",model_name))
|
148 |
+
curr_model_name = model_name
|
149 |
+
hps = hps_[curr_model_name]
|
150 |
+
all_files = os.listdir(os.path.join("logs",model_name))
|
151 |
+
hps = utils.get_hparams_from_file(os.path.join("logs",model_name,"config.json"))
|
152 |
+
net_g = SynthesizerTrn(
|
153 |
+
len(symbols),
|
154 |
+
hps.data.filter_length // 2 + 1,
|
155 |
+
hps.train.segment_size // hps.data.hop_length,
|
156 |
+
n_speakers=hps.data.n_speakers,
|
157 |
+
**hps.model,
|
158 |
+
).to(device)
|
159 |
+
_ = net_g.eval()
|
160 |
+
#获取G_最大的模型:
|
161 |
+
g_files = [f for f in all_files if f.startswith('G_') and f.endswith('.pth')]
|
162 |
+
|
163 |
+
# 提取文件名中的数字,并找到最大的数字
|
164 |
+
max_num = -1
|
165 |
+
max_file = None
|
166 |
+
for f in g_files:
|
167 |
+
num = int(re.search(r'G_(\d+).pth', f).group(1))
|
168 |
+
if num > max_num:
|
169 |
+
max_num = num
|
170 |
+
max_file = f
|
171 |
+
|
172 |
+
# 加载对应的模型
|
173 |
+
if max_file:
|
174 |
+
file_path = os.path.join('./logs/',model_name, max_file)
|
175 |
+
_ = utils.load_checkpoint(file_path, net_g, None, skip_optimizer=True)
|
176 |
+
else:
|
177 |
+
print("没有找到合适的文件")
|
178 |
+
|
179 |
+
if __name__ == "__main__":
|
180 |
+
|
181 |
+
|
182 |
+
models = os.listdir("./logs")
|
183 |
+
hps_ = {}
|
184 |
+
for i in models:
|
185 |
+
hps_[i] = utils.get_hparams_from_file(os.path.join("./logs", i, "config.json"))
|
186 |
+
curr_model_name = models[0]
|
187 |
+
hps = hps_[curr_model_name]
|
188 |
+
|
189 |
+
# speaker_ids = hps.data.spk2id
|
190 |
+
# speakers = list(speaker_ids.keys())
|
191 |
+
device = (
|
192 |
+
"cuda:0"
|
193 |
+
if torch.cuda.is_available()
|
194 |
+
else (
|
195 |
+
"mps"
|
196 |
+
if sys.platform == "darwin" and torch.backends.mps.is_available()
|
197 |
+
else "cpu"
|
198 |
+
)
|
199 |
+
)
|
200 |
+
net_g = SynthesizerTrn(
|
201 |
+
len(symbols),
|
202 |
+
hps.data.filter_length // 2 + 1,
|
203 |
+
hps.train.segment_size // hps.data.hop_length,
|
204 |
+
n_speakers=hps.data.n_speakers,
|
205 |
+
**hps.model,
|
206 |
+
).to(device)
|
207 |
+
_ = net_g.eval()
|
208 |
+
|
209 |
+
languages = ["ZH", "JP"]
|
210 |
+
with gr.Blocks() as app:
|
211 |
+
with gr.Tab(label="umamusume"):
|
212 |
+
with gr.Row():
|
213 |
+
with gr.Column():
|
214 |
+
text = gr.TextArea(
|
215 |
+
label="Text",
|
216 |
+
placeholder="Input Text Here",
|
217 |
+
value="はりきっていこう!",
|
218 |
+
)
|
219 |
+
speaker = gr.Dropdown(
|
220 |
+
choices=models, value=models[0], label="Models"
|
221 |
+
)
|
222 |
+
with gr.Accordion("Settings",open=False):
|
223 |
+
sdp_ratio = gr.Slider(
|
224 |
+
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
|
225 |
+
)
|
226 |
+
noise_scale = gr.Slider(
|
227 |
+
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
|
228 |
+
)
|
229 |
+
noise_scale_w = gr.Slider(
|
230 |
+
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
|
231 |
+
)
|
232 |
+
length_scale = gr.Slider(
|
233 |
+
minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
|
234 |
+
)
|
235 |
+
language = gr.Dropdown(
|
236 |
+
choices=languages, value=languages[1], label="Language"
|
237 |
+
)
|
238 |
+
btn = gr.Button("Generate!", variant="primary")
|
239 |
+
with gr.Column():
|
240 |
+
text_output = gr.Textbox(label="Message")
|
241 |
+
audio_output = gr.Audio(label="Output Audio")
|
242 |
+
gr.Markdown("# 赛马娘 Bert-VITS2 语音合成\n"
|
243 |
+
"Project page:[GitHub](https://github.com/fishaudio/Bert-VITS2)\n"
|
244 |
+
"- Still Updating...\n"
|
245 |
+
"- We found that model trained with only 1 speaker may generate better audio than multi-speaker model.\n")
|
246 |
+
|
247 |
+
btn.click(
|
248 |
+
tts_fn,
|
249 |
+
inputs=[
|
250 |
+
text,
|
251 |
+
speaker,
|
252 |
+
sdp_ratio,
|
253 |
+
noise_scale,
|
254 |
+
noise_scale_w,
|
255 |
+
length_scale,
|
256 |
+
language,
|
257 |
+
],
|
258 |
+
outputs=[text_output, audio_output],
|
259 |
+
)
|
260 |
+
app.launch(server_name="0.0.0.0")
|
app0.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: E402
|
2 |
+
|
3 |
+
import sys, os
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
import numpy as np # 假设你使用NumPy来处理音频数据
|
8 |
+
import shutil # 用于删除文件夹和文件
|
9 |
+
from scipy.io import wavfile
|
10 |
+
|
11 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
12 |
+
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
13 |
+
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
14 |
+
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
15 |
+
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
|
18 |
+
)
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import argparse
|
24 |
+
import commons
|
25 |
+
import utils
|
26 |
+
from models import SynthesizerTrn
|
27 |
+
from text.symbols import symbols
|
28 |
+
from text import cleaned_text_to_sequence, get_bert
|
29 |
+
from text.cleaner import clean_text
|
30 |
+
import gradio as gr
|
31 |
+
import webbrowser
|
32 |
+
import numpy as np
|
33 |
+
|
34 |
+
net_g = None
|
35 |
+
|
36 |
+
if sys.platform == "darwin" and torch.backends.mps.is_available():
|
37 |
+
device = "mps"
|
38 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
39 |
+
else:
|
40 |
+
device = "cuda"
|
41 |
+
|
42 |
+
|
43 |
+
def get_text(text, language_str, hps):
|
44 |
+
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
45 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
46 |
+
|
47 |
+
if hps.data.add_blank:
|
48 |
+
phone = commons.intersperse(phone, 0)
|
49 |
+
tone = commons.intersperse(tone, 0)
|
50 |
+
language = commons.intersperse(language, 0)
|
51 |
+
for i in range(len(word2ph)):
|
52 |
+
word2ph[i] = word2ph[i] * 2
|
53 |
+
word2ph[0] += 1
|
54 |
+
bert = get_bert(norm_text, word2ph, language_str, device)
|
55 |
+
del word2ph
|
56 |
+
assert bert.shape[-1] == len(phone), phone
|
57 |
+
|
58 |
+
if language_str == "ZH":
|
59 |
+
bert = bert
|
60 |
+
ja_bert = torch.zeros(768, len(phone))
|
61 |
+
elif language_str == "JP":
|
62 |
+
ja_bert = bert
|
63 |
+
bert = torch.zeros(1024, len(phone))
|
64 |
+
else:
|
65 |
+
bert = torch.zeros(1024, len(phone))
|
66 |
+
ja_bert = torch.zeros(768, len(phone))
|
67 |
+
|
68 |
+
assert bert.shape[-1] == len(
|
69 |
+
phone
|
70 |
+
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
71 |
+
|
72 |
+
phone = torch.LongTensor(phone)
|
73 |
+
tone = torch.LongTensor(tone)
|
74 |
+
language = torch.LongTensor(language)
|
75 |
+
return bert, ja_bert, phone, tone, language
|
76 |
+
|
77 |
+
|
78 |
+
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
|
79 |
+
global net_g
|
80 |
+
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
|
81 |
+
with torch.no_grad():
|
82 |
+
x_tst = phones.to(device).unsqueeze(0)
|
83 |
+
tones = tones.to(device).unsqueeze(0)
|
84 |
+
lang_ids = lang_ids.to(device).unsqueeze(0)
|
85 |
+
bert = bert.to(device).unsqueeze(0)
|
86 |
+
ja_bert = ja_bert.to(device).unsqueeze(0)
|
87 |
+
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
88 |
+
#print(x_tst.type(), tones.type(), lang_ids.type(), bert.type(), ja_bert.type(), x_tst_lengths.type())
|
89 |
+
del phones
|
90 |
+
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
|
91 |
+
audio = (
|
92 |
+
net_g.infer(
|
93 |
+
x_tst,
|
94 |
+
x_tst_lengths,
|
95 |
+
speakers,
|
96 |
+
tones,
|
97 |
+
lang_ids,
|
98 |
+
bert,
|
99 |
+
ja_bert,
|
100 |
+
sdp_ratio=sdp_ratio,
|
101 |
+
noise_scale=noise_scale,
|
102 |
+
noise_scale_w=noise_scale_w,
|
103 |
+
length_scale=length_scale,
|
104 |
+
)[0][0, 0]
|
105 |
+
.data.cpu()
|
106 |
+
.float()
|
107 |
+
.numpy()
|
108 |
+
)
|
109 |
+
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
|
110 |
+
torch.cuda.empty_cache()
|
111 |
+
return audio
|
112 |
+
|
113 |
+
def infer_2(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
|
114 |
+
global net_g_2
|
115 |
+
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
|
116 |
+
with torch.no_grad():
|
117 |
+
x_tst = phones.to(device).unsqueeze(0)
|
118 |
+
tones = tones.to(device).unsqueeze(0)
|
119 |
+
lang_ids = lang_ids.to(device).unsqueeze(0)
|
120 |
+
bert = bert.to(device).unsqueeze(0)
|
121 |
+
ja_bert = ja_bert.to(device).unsqueeze(0)
|
122 |
+
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
123 |
+
#print(x_tst.type(), tones.type(), lang_ids.type(), bert.type(), ja_bert.type(), x_tst_lengths.type())
|
124 |
+
del phones
|
125 |
+
speakers = torch.LongTensor([hps_2.data.spk2id[sid]]).to(device)
|
126 |
+
audio = (
|
127 |
+
net_g_2.infer(
|
128 |
+
x_tst,
|
129 |
+
x_tst_lengths,
|
130 |
+
speakers,
|
131 |
+
tones,
|
132 |
+
lang_ids,
|
133 |
+
bert,
|
134 |
+
ja_bert,
|
135 |
+
sdp_ratio=sdp_ratio,
|
136 |
+
noise_scale=noise_scale,
|
137 |
+
noise_scale_w=noise_scale_w,
|
138 |
+
length_scale=length_scale,
|
139 |
+
)[0][0, 0]
|
140 |
+
.data.cpu()
|
141 |
+
.float()
|
142 |
+
.numpy()
|
143 |
+
)
|
144 |
+
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
|
145 |
+
torch.cuda.empty_cache()
|
146 |
+
return audio
|
147 |
+
|
148 |
+
__LOG__ = "./generation_logs.txt"
|
149 |
+
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language,from_model=0):
|
150 |
+
# 清空 ./infer_save 文件夹
|
151 |
+
if os.path.exists('./infer_save'):
|
152 |
+
shutil.rmtree('./infer_save')
|
153 |
+
os.makedirs('./infer_save')
|
154 |
+
|
155 |
+
slices = text.split("\n")
|
156 |
+
slices = [slice for slice in slices if slice.strip() != ""]
|
157 |
+
audio_list = []
|
158 |
+
with torch.no_grad():
|
159 |
+
with open(__LOG__,"a",encoding="UTF-8") as f:
|
160 |
+
for slice in slices:
|
161 |
+
assert len(slice) < 150 # 限制输入的文本长度
|
162 |
+
if from_model == 0:
|
163 |
+
audio = infer(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language=language)
|
164 |
+
else:
|
165 |
+
audio = infer_2(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language=language)
|
166 |
+
audio_list.append(audio)
|
167 |
+
|
168 |
+
# 创建唯一的文件名
|
169 |
+
timestamp = str(int(time.time() * 1000))
|
170 |
+
audio_file_path = f'./infer_save/audio_{timestamp}.wav'
|
171 |
+
|
172 |
+
# 保存音频数据到.wav文件
|
173 |
+
wavfile.write(audio_file_path, hps.data.sampling_rate, audio)
|
174 |
+
|
175 |
+
silence = np.zeros(int(hps.data.sampling_rate/2), dtype=np.int16) # 生成半秒的静音
|
176 |
+
audio_list.append(silence) # 将静音添加到列表中
|
177 |
+
|
178 |
+
f.write(f"{slice} | {speaker}\n")
|
179 |
+
print(f"{slice} | {speaker}")
|
180 |
+
|
181 |
+
audio_concat = np.concatenate(audio_list)
|
182 |
+
return "Success", (hps.data.sampling_rate, audio_concat)
|
183 |
+
def tts_fn_2(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language,from_model=1):
|
184 |
+
return tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language,from_model)
|
185 |
+
|
186 |
+
if __name__ == "__main__":
|
187 |
+
parser = argparse.ArgumentParser()
|
188 |
+
parser.add_argument(
|
189 |
+
"-m", "--model", default="./logs/natuki/G_72000.pth", help="path of your model"
|
190 |
+
)
|
191 |
+
parser.add_argument(
|
192 |
+
"-c",
|
193 |
+
"--config",
|
194 |
+
default="./configs/config.json",
|
195 |
+
help="path of your config file",
|
196 |
+
)
|
197 |
+
parser.add_argument(
|
198 |
+
"--share", default=False, help="make link public", action="store_true"
|
199 |
+
)
|
200 |
+
parser.add_argument(
|
201 |
+
"-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
|
202 |
+
)
|
203 |
+
|
204 |
+
args = parser.parse_args()
|
205 |
+
if args.debug:
|
206 |
+
logger.info("Enable DEBUG-LEVEL log")
|
207 |
+
logging.basicConfig(level=logging.DEBUG)
|
208 |
+
hps = utils.get_hparams_from_file("./logs/digital/config.json")
|
209 |
+
hps_2 = utils.get_hparams_from_file("./logs/fukukitaru/config.json")
|
210 |
+
|
211 |
+
device = (
|
212 |
+
"cuda:0"
|
213 |
+
if torch.cuda.is_available()
|
214 |
+
else (
|
215 |
+
"mps"
|
216 |
+
if sys.platform == "darwin" and torch.backends.mps.is_available()
|
217 |
+
else "cpu"
|
218 |
+
)
|
219 |
+
)
|
220 |
+
net_g = SynthesizerTrn(
|
221 |
+
len(symbols),
|
222 |
+
hps.data.filter_length // 2 + 1,
|
223 |
+
hps.train.segment_size // hps.data.hop_length,
|
224 |
+
n_speakers=hps.data.n_speakers,
|
225 |
+
**hps.model,
|
226 |
+
).to(device)
|
227 |
+
_ = net_g.eval()
|
228 |
+
|
229 |
+
net_g_2 = SynthesizerTrn(
|
230 |
+
len(symbols),
|
231 |
+
hps.data.filter_length // 2 + 1,
|
232 |
+
hps.train.segment_size // hps.data.hop_length,
|
233 |
+
n_speakers=hps.data.n_speakers,
|
234 |
+
**hps.model,
|
235 |
+
).to(device)
|
236 |
+
|
237 |
+
_ = utils.load_checkpoint("./logs/digital/G_10500.pth", net_g, None, skip_optimizer=True)
|
238 |
+
_ = utils.load_checkpoint("./logs/fukukitaru/G_10000.pth", net_g_2, None, skip_optimizer=True)
|
239 |
+
|
240 |
+
speaker_ids = hps.data.spk2id
|
241 |
+
speakers = list(speaker_ids.keys())
|
242 |
+
speaker_ids_2 = hps_2.data.spk2id
|
243 |
+
speakers_2 = list(speaker_ids_2.keys())
|
244 |
+
|
245 |
+
|
246 |
+
languages = ["ZH", "JP"]
|
247 |
+
with gr.Blocks() as app:
|
248 |
+
with gr.Tab(label="umamusume"):
|
249 |
+
with gr.Row():
|
250 |
+
with gr.Column():
|
251 |
+
text = gr.TextArea(
|
252 |
+
label="Text",
|
253 |
+
placeholder="Input Text Here",
|
254 |
+
value="はりきっていこう!",
|
255 |
+
)
|
256 |
+
speaker = gr.Dropdown(
|
257 |
+
choices=speakers, value=speakers[0], label="Speaker"
|
258 |
+
)
|
259 |
+
sdp_ratio = gr.Slider(
|
260 |
+
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
|
261 |
+
)
|
262 |
+
noise_scale = gr.Slider(
|
263 |
+
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
|
264 |
+
)
|
265 |
+
noise_scale_w = gr.Slider(
|
266 |
+
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
|
267 |
+
)
|
268 |
+
length_scale = gr.Slider(
|
269 |
+
minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
|
270 |
+
)
|
271 |
+
language = gr.Dropdown(
|
272 |
+
choices=languages, value=languages[1], label="Language"
|
273 |
+
)
|
274 |
+
btn = gr.Button("Generate!", variant="primary")
|
275 |
+
with gr.Column():
|
276 |
+
text_output = gr.Textbox(label="Message")
|
277 |
+
audio_output = gr.Audio(label="Output Audio")
|
278 |
+
gr.Markdown("# 赛马娘 Bert-VITS2 语音合成\n"
|
279 |
+
"Project page:[GitHub](https://github.com/fishaudio/Bert-VITS2)\n"
|
280 |
+
"- 本项目在日语方面有所欠缺,特别是音调的设计上,需要帮助。\n"
|
281 |
+
"- このプロジェクトは、日本語の方面で不足しています。特に、音調の設計に関して助けが欲しいです。")
|
282 |
+
|
283 |
+
btn.click(
|
284 |
+
tts_fn,
|
285 |
+
inputs=[
|
286 |
+
text,
|
287 |
+
speaker,
|
288 |
+
sdp_ratio,
|
289 |
+
noise_scale,
|
290 |
+
noise_scale_w,
|
291 |
+
length_scale,
|
292 |
+
language,
|
293 |
+
],
|
294 |
+
outputs=[text_output, audio_output],
|
295 |
+
)
|
296 |
+
with gr.Tab(label="natuki"):
|
297 |
+
with gr.Row():
|
298 |
+
with gr.Column():
|
299 |
+
text2 = gr.TextArea(
|
300 |
+
label="Text",
|
301 |
+
placeholder="Input Text Here",
|
302 |
+
value="はりきっていこう!",
|
303 |
+
)
|
304 |
+
speaker2 = gr.Dropdown(
|
305 |
+
choices=speakers_2, value=speakers_2[0], label="Speaker"
|
306 |
+
)
|
307 |
+
sdp_ratio2 = gr.Slider(
|
308 |
+
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
|
309 |
+
)
|
310 |
+
noise_scale2 = gr.Slider(
|
311 |
+
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
|
312 |
+
)
|
313 |
+
noise_scale_w2 = gr.Slider(
|
314 |
+
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
|
315 |
+
)
|
316 |
+
length_scale2 = gr.Slider(
|
317 |
+
minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
|
318 |
+
)
|
319 |
+
language2 = gr.Dropdown(
|
320 |
+
choices=languages, value=languages[1], label="Language"
|
321 |
+
)
|
322 |
+
btn2 = gr.Button("Generate!", variant="primary")
|
323 |
+
with gr.Column():
|
324 |
+
text_output2 = gr.Textbox(label="Message")
|
325 |
+
audio_output2 = gr.Audio(label="Output Audio")
|
326 |
+
gr.Markdown("# 赛马娘 Bert-VITS2 语音合成\n"
|
327 |
+
"Project page:[GitHub](https://github.com/fishaudio/Bert-VITS2)\n"
|
328 |
+
"- 本项目在日语方面有所欠缺,特别是音调的设计上,需要帮助。\n"
|
329 |
+
"- このプロジェクトは、日本語の方面で不足しています。特に、音調の設計に関して助けが欲しいです。")
|
330 |
+
|
331 |
+
btn2.click(
|
332 |
+
tts_fn_2,
|
333 |
+
inputs=[
|
334 |
+
text2,
|
335 |
+
speaker2,
|
336 |
+
sdp_ratio2,
|
337 |
+
noise_scale2,
|
338 |
+
noise_scale_w2,
|
339 |
+
length_scale2,
|
340 |
+
language2,
|
341 |
+
],
|
342 |
+
outputs=[text_output2, audio_output2],
|
343 |
+
)
|
344 |
+
app.launch(server_name="0.0.0.0")
|
attentions.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import logging
|
8 |
+
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
class LayerNorm(nn.Module):
|
13 |
+
def __init__(self, channels, eps=1e-5):
|
14 |
+
super().__init__()
|
15 |
+
self.channels = channels
|
16 |
+
self.eps = eps
|
17 |
+
|
18 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
19 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = x.transpose(1, -1)
|
23 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
24 |
+
return x.transpose(1, -1)
|
25 |
+
|
26 |
+
|
27 |
+
@torch.jit.script
|
28 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
29 |
+
n_channels_int = n_channels[0]
|
30 |
+
in_act = input_a + input_b
|
31 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
32 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
33 |
+
acts = t_act * s_act
|
34 |
+
return acts
|
35 |
+
|
36 |
+
|
37 |
+
class Encoder(nn.Module):
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
hidden_channels,
|
41 |
+
filter_channels,
|
42 |
+
n_heads,
|
43 |
+
n_layers,
|
44 |
+
kernel_size=1,
|
45 |
+
p_dropout=0.0,
|
46 |
+
window_size=4,
|
47 |
+
isflow=True,
|
48 |
+
**kwargs
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.hidden_channels = hidden_channels
|
52 |
+
self.filter_channels = filter_channels
|
53 |
+
self.n_heads = n_heads
|
54 |
+
self.n_layers = n_layers
|
55 |
+
self.kernel_size = kernel_size
|
56 |
+
self.p_dropout = p_dropout
|
57 |
+
self.window_size = window_size
|
58 |
+
# if isflow:
|
59 |
+
# cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
|
60 |
+
# self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
|
61 |
+
# self.cond_layer = weight_norm(cond_layer, name='weight')
|
62 |
+
# self.gin_channels = 256
|
63 |
+
self.cond_layer_idx = self.n_layers
|
64 |
+
if "gin_channels" in kwargs:
|
65 |
+
self.gin_channels = kwargs["gin_channels"]
|
66 |
+
if self.gin_channels != 0:
|
67 |
+
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
|
68 |
+
# vits2 says 3rd block, so idx is 2 by default
|
69 |
+
self.cond_layer_idx = (
|
70 |
+
kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
|
71 |
+
)
|
72 |
+
logging.debug(self.gin_channels, self.cond_layer_idx)
|
73 |
+
assert (
|
74 |
+
self.cond_layer_idx < self.n_layers
|
75 |
+
), "cond_layer_idx should be less than n_layers"
|
76 |
+
self.drop = nn.Dropout(p_dropout)
|
77 |
+
self.attn_layers = nn.ModuleList()
|
78 |
+
self.norm_layers_1 = nn.ModuleList()
|
79 |
+
self.ffn_layers = nn.ModuleList()
|
80 |
+
self.norm_layers_2 = nn.ModuleList()
|
81 |
+
for i in range(self.n_layers):
|
82 |
+
self.attn_layers.append(
|
83 |
+
MultiHeadAttention(
|
84 |
+
hidden_channels,
|
85 |
+
hidden_channels,
|
86 |
+
n_heads,
|
87 |
+
p_dropout=p_dropout,
|
88 |
+
window_size=window_size,
|
89 |
+
)
|
90 |
+
)
|
91 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
92 |
+
self.ffn_layers.append(
|
93 |
+
FFN(
|
94 |
+
hidden_channels,
|
95 |
+
hidden_channels,
|
96 |
+
filter_channels,
|
97 |
+
kernel_size,
|
98 |
+
p_dropout=p_dropout,
|
99 |
+
)
|
100 |
+
)
|
101 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
102 |
+
|
103 |
+
def forward(self, x, x_mask, g=None):
|
104 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
105 |
+
x = x * x_mask
|
106 |
+
for i in range(self.n_layers):
|
107 |
+
if i == self.cond_layer_idx and g is not None:
|
108 |
+
g = self.spk_emb_linear(g.transpose(1, 2))
|
109 |
+
g = g.transpose(1, 2)
|
110 |
+
x = x + g
|
111 |
+
x = x * x_mask
|
112 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
113 |
+
y = self.drop(y)
|
114 |
+
x = self.norm_layers_1[i](x + y)
|
115 |
+
|
116 |
+
y = self.ffn_layers[i](x, x_mask)
|
117 |
+
y = self.drop(y)
|
118 |
+
x = self.norm_layers_2[i](x + y)
|
119 |
+
x = x * x_mask
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class Decoder(nn.Module):
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
hidden_channels,
|
127 |
+
filter_channels,
|
128 |
+
n_heads,
|
129 |
+
n_layers,
|
130 |
+
kernel_size=1,
|
131 |
+
p_dropout=0.0,
|
132 |
+
proximal_bias=False,
|
133 |
+
proximal_init=True,
|
134 |
+
**kwargs
|
135 |
+
):
|
136 |
+
super().__init__()
|
137 |
+
self.hidden_channels = hidden_channels
|
138 |
+
self.filter_channels = filter_channels
|
139 |
+
self.n_heads = n_heads
|
140 |
+
self.n_layers = n_layers
|
141 |
+
self.kernel_size = kernel_size
|
142 |
+
self.p_dropout = p_dropout
|
143 |
+
self.proximal_bias = proximal_bias
|
144 |
+
self.proximal_init = proximal_init
|
145 |
+
|
146 |
+
self.drop = nn.Dropout(p_dropout)
|
147 |
+
self.self_attn_layers = nn.ModuleList()
|
148 |
+
self.norm_layers_0 = nn.ModuleList()
|
149 |
+
self.encdec_attn_layers = nn.ModuleList()
|
150 |
+
self.norm_layers_1 = nn.ModuleList()
|
151 |
+
self.ffn_layers = nn.ModuleList()
|
152 |
+
self.norm_layers_2 = nn.ModuleList()
|
153 |
+
for i in range(self.n_layers):
|
154 |
+
self.self_attn_layers.append(
|
155 |
+
MultiHeadAttention(
|
156 |
+
hidden_channels,
|
157 |
+
hidden_channels,
|
158 |
+
n_heads,
|
159 |
+
p_dropout=p_dropout,
|
160 |
+
proximal_bias=proximal_bias,
|
161 |
+
proximal_init=proximal_init,
|
162 |
+
)
|
163 |
+
)
|
164 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
165 |
+
self.encdec_attn_layers.append(
|
166 |
+
MultiHeadAttention(
|
167 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
168 |
+
)
|
169 |
+
)
|
170 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
171 |
+
self.ffn_layers.append(
|
172 |
+
FFN(
|
173 |
+
hidden_channels,
|
174 |
+
hidden_channels,
|
175 |
+
filter_channels,
|
176 |
+
kernel_size,
|
177 |
+
p_dropout=p_dropout,
|
178 |
+
causal=True,
|
179 |
+
)
|
180 |
+
)
|
181 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
182 |
+
|
183 |
+
def forward(self, x, x_mask, h, h_mask):
|
184 |
+
"""
|
185 |
+
x: decoder input
|
186 |
+
h: encoder output
|
187 |
+
"""
|
188 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
189 |
+
device=x.device, dtype=x.dtype
|
190 |
+
)
|
191 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
192 |
+
x = x * x_mask
|
193 |
+
for i in range(self.n_layers):
|
194 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
195 |
+
y = self.drop(y)
|
196 |
+
x = self.norm_layers_0[i](x + y)
|
197 |
+
|
198 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
199 |
+
y = self.drop(y)
|
200 |
+
x = self.norm_layers_1[i](x + y)
|
201 |
+
|
202 |
+
y = self.ffn_layers[i](x, x_mask)
|
203 |
+
y = self.drop(y)
|
204 |
+
x = self.norm_layers_2[i](x + y)
|
205 |
+
x = x * x_mask
|
206 |
+
return x
|
207 |
+
|
208 |
+
|
209 |
+
class MultiHeadAttention(nn.Module):
|
210 |
+
def __init__(
|
211 |
+
self,
|
212 |
+
channels,
|
213 |
+
out_channels,
|
214 |
+
n_heads,
|
215 |
+
p_dropout=0.0,
|
216 |
+
window_size=None,
|
217 |
+
heads_share=True,
|
218 |
+
block_length=None,
|
219 |
+
proximal_bias=False,
|
220 |
+
proximal_init=False,
|
221 |
+
):
|
222 |
+
super().__init__()
|
223 |
+
assert channels % n_heads == 0
|
224 |
+
|
225 |
+
self.channels = channels
|
226 |
+
self.out_channels = out_channels
|
227 |
+
self.n_heads = n_heads
|
228 |
+
self.p_dropout = p_dropout
|
229 |
+
self.window_size = window_size
|
230 |
+
self.heads_share = heads_share
|
231 |
+
self.block_length = block_length
|
232 |
+
self.proximal_bias = proximal_bias
|
233 |
+
self.proximal_init = proximal_init
|
234 |
+
self.attn = None
|
235 |
+
|
236 |
+
self.k_channels = channels // n_heads
|
237 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
238 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
239 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
240 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
241 |
+
self.drop = nn.Dropout(p_dropout)
|
242 |
+
|
243 |
+
if window_size is not None:
|
244 |
+
n_heads_rel = 1 if heads_share else n_heads
|
245 |
+
rel_stddev = self.k_channels**-0.5
|
246 |
+
self.emb_rel_k = nn.Parameter(
|
247 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
248 |
+
* rel_stddev
|
249 |
+
)
|
250 |
+
self.emb_rel_v = nn.Parameter(
|
251 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
252 |
+
* rel_stddev
|
253 |
+
)
|
254 |
+
|
255 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
256 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
257 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
258 |
+
if proximal_init:
|
259 |
+
with torch.no_grad():
|
260 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
261 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
262 |
+
|
263 |
+
def forward(self, x, c, attn_mask=None):
|
264 |
+
q = self.conv_q(x)
|
265 |
+
k = self.conv_k(c)
|
266 |
+
v = self.conv_v(c)
|
267 |
+
|
268 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
269 |
+
|
270 |
+
x = self.conv_o(x)
|
271 |
+
return x
|
272 |
+
|
273 |
+
def attention(self, query, key, value, mask=None):
|
274 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
275 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
276 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
277 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
278 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
279 |
+
|
280 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
281 |
+
if self.window_size is not None:
|
282 |
+
assert (
|
283 |
+
t_s == t_t
|
284 |
+
), "Relative attention is only available for self-attention."
|
285 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
286 |
+
rel_logits = self._matmul_with_relative_keys(
|
287 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
288 |
+
)
|
289 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
290 |
+
scores = scores + scores_local
|
291 |
+
if self.proximal_bias:
|
292 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
293 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
294 |
+
device=scores.device, dtype=scores.dtype
|
295 |
+
)
|
296 |
+
if mask is not None:
|
297 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
298 |
+
if self.block_length is not None:
|
299 |
+
assert (
|
300 |
+
t_s == t_t
|
301 |
+
), "Local attention is only available for self-attention."
|
302 |
+
block_mask = (
|
303 |
+
torch.ones_like(scores)
|
304 |
+
.triu(-self.block_length)
|
305 |
+
.tril(self.block_length)
|
306 |
+
)
|
307 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
308 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
309 |
+
p_attn = self.drop(p_attn)
|
310 |
+
output = torch.matmul(p_attn, value)
|
311 |
+
if self.window_size is not None:
|
312 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
313 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
314 |
+
self.emb_rel_v, t_s
|
315 |
+
)
|
316 |
+
output = output + self._matmul_with_relative_values(
|
317 |
+
relative_weights, value_relative_embeddings
|
318 |
+
)
|
319 |
+
output = (
|
320 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
321 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
322 |
+
return output, p_attn
|
323 |
+
|
324 |
+
def _matmul_with_relative_values(self, x, y):
|
325 |
+
"""
|
326 |
+
x: [b, h, l, m]
|
327 |
+
y: [h or 1, m, d]
|
328 |
+
ret: [b, h, l, d]
|
329 |
+
"""
|
330 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
331 |
+
return ret
|
332 |
+
|
333 |
+
def _matmul_with_relative_keys(self, x, y):
|
334 |
+
"""
|
335 |
+
x: [b, h, l, d]
|
336 |
+
y: [h or 1, m, d]
|
337 |
+
ret: [b, h, l, m]
|
338 |
+
"""
|
339 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
340 |
+
return ret
|
341 |
+
|
342 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
343 |
+
2 * self.window_size + 1
|
344 |
+
# Pad first before slice to avoid using cond ops.
|
345 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
346 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
347 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
348 |
+
if pad_length > 0:
|
349 |
+
padded_relative_embeddings = F.pad(
|
350 |
+
relative_embeddings,
|
351 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
padded_relative_embeddings = relative_embeddings
|
355 |
+
used_relative_embeddings = padded_relative_embeddings[
|
356 |
+
:, slice_start_position:slice_end_position
|
357 |
+
]
|
358 |
+
return used_relative_embeddings
|
359 |
+
|
360 |
+
def _relative_position_to_absolute_position(self, x):
|
361 |
+
"""
|
362 |
+
x: [b, h, l, 2*l-1]
|
363 |
+
ret: [b, h, l, l]
|
364 |
+
"""
|
365 |
+
batch, heads, length, _ = x.size()
|
366 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
367 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
368 |
+
|
369 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
370 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
371 |
+
x_flat = F.pad(
|
372 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
373 |
+
)
|
374 |
+
|
375 |
+
# Reshape and slice out the padded elements.
|
376 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
377 |
+
:, :, :length, length - 1 :
|
378 |
+
]
|
379 |
+
return x_final
|
380 |
+
|
381 |
+
def _absolute_position_to_relative_position(self, x):
|
382 |
+
"""
|
383 |
+
x: [b, h, l, l]
|
384 |
+
ret: [b, h, l, 2*l-1]
|
385 |
+
"""
|
386 |
+
batch, heads, length, _ = x.size()
|
387 |
+
# pad along column
|
388 |
+
x = F.pad(
|
389 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
390 |
+
)
|
391 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
392 |
+
# add 0's in the beginning that will skew the elements after reshape
|
393 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
394 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
395 |
+
return x_final
|
396 |
+
|
397 |
+
def _attention_bias_proximal(self, length):
|
398 |
+
"""Bias for self-attention to encourage attention to close positions.
|
399 |
+
Args:
|
400 |
+
length: an integer scalar.
|
401 |
+
Returns:
|
402 |
+
a Tensor with shape [1, 1, length, length]
|
403 |
+
"""
|
404 |
+
r = torch.arange(length, dtype=torch.float32)
|
405 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
406 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
407 |
+
|
408 |
+
|
409 |
+
class FFN(nn.Module):
|
410 |
+
def __init__(
|
411 |
+
self,
|
412 |
+
in_channels,
|
413 |
+
out_channels,
|
414 |
+
filter_channels,
|
415 |
+
kernel_size,
|
416 |
+
p_dropout=0.0,
|
417 |
+
activation=None,
|
418 |
+
causal=False,
|
419 |
+
):
|
420 |
+
super().__init__()
|
421 |
+
self.in_channels = in_channels
|
422 |
+
self.out_channels = out_channels
|
423 |
+
self.filter_channels = filter_channels
|
424 |
+
self.kernel_size = kernel_size
|
425 |
+
self.p_dropout = p_dropout
|
426 |
+
self.activation = activation
|
427 |
+
self.causal = causal
|
428 |
+
|
429 |
+
if causal:
|
430 |
+
self.padding = self._causal_padding
|
431 |
+
else:
|
432 |
+
self.padding = self._same_padding
|
433 |
+
|
434 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
435 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
436 |
+
self.drop = nn.Dropout(p_dropout)
|
437 |
+
|
438 |
+
def forward(self, x, x_mask):
|
439 |
+
x = self.conv_1(self.padding(x * x_mask))
|
440 |
+
if self.activation == "gelu":
|
441 |
+
x = x * torch.sigmoid(1.702 * x)
|
442 |
+
else:
|
443 |
+
x = torch.relu(x)
|
444 |
+
x = self.drop(x)
|
445 |
+
x = self.conv_2(self.padding(x * x_mask))
|
446 |
+
return x * x_mask
|
447 |
+
|
448 |
+
def _causal_padding(self, x):
|
449 |
+
if self.kernel_size == 1:
|
450 |
+
return x
|
451 |
+
pad_l = self.kernel_size - 1
|
452 |
+
pad_r = 0
|
453 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
454 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
455 |
+
return x
|
456 |
+
|
457 |
+
def _same_padding(self, x):
|
458 |
+
if self.kernel_size == 1:
|
459 |
+
return x
|
460 |
+
pad_l = (self.kernel_size - 1) // 2
|
461 |
+
pad_r = self.kernel_size // 2
|
462 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
463 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
464 |
+
return x
|
bert/bert-base-japanese-v3/README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- cc100
|
5 |
+
- wikipedia
|
6 |
+
language:
|
7 |
+
- ja
|
8 |
+
widget:
|
9 |
+
- text: 東北大学で[MASK]の研究をしています。
|
10 |
+
---
|
11 |
+
|
12 |
+
# BERT base Japanese (unidic-lite with whole word masking, CC-100 and jawiki-20230102)
|
13 |
+
|
14 |
+
This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language.
|
15 |
+
|
16 |
+
This version of the model processes input texts with word-level tokenization based on the Unidic 2.1.2 dictionary (available in [unidic-lite](https://pypi.org/project/unidic-lite/) package), followed by the WordPiece subword tokenization.
|
17 |
+
Additionally, the model is trained with the whole word masking enabled for the masked language modeling (MLM) objective.
|
18 |
+
|
19 |
+
The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/).
|
20 |
+
|
21 |
+
## Model architecture
|
22 |
+
|
23 |
+
The model architecture is the same as the original BERT base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads.
|
24 |
+
|
25 |
+
## Training Data
|
26 |
+
|
27 |
+
The model is trained on the Japanese portion of [CC-100 dataset](https://data.statmt.org/cc-100/) and the Japanese version of Wikipedia.
|
28 |
+
For Wikipedia, we generated a text corpus from the [Wikipedia Cirrussearch dump file](https://dumps.wikimedia.org/other/cirrussearch/) as of January 2, 2023.
|
29 |
+
The corpus files generated from CC-100 and Wikipedia are 74.3GB and 4.9GB in size and consist of approximately 392M and 34M sentences, respectively.
|
30 |
+
|
31 |
+
For the purpose of splitting texts into sentences, we used [fugashi](https://github.com/polm/fugashi) with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd) dictionary (v0.0.7).
|
32 |
+
|
33 |
+
## Tokenization
|
34 |
+
|
35 |
+
The texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm.
|
36 |
+
The vocabulary size is 32768.
|
37 |
+
|
38 |
+
We used [fugashi](https://github.com/polm/fugashi) and [unidic-lite](https://github.com/polm/unidic-lite) packages for the tokenization.
|
39 |
+
|
40 |
+
## Training
|
41 |
+
|
42 |
+
We trained the model first on the CC-100 corpus for 1M steps and then on the Wikipedia corpus for another 1M steps.
|
43 |
+
For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once.
|
44 |
+
|
45 |
+
For training of each model, we used a v3-8 instance of Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/).
|
46 |
+
|
47 |
+
## Licenses
|
48 |
+
|
49 |
+
The pretrained models are distributed under the Apache License 2.0.
|
50 |
+
|
51 |
+
## Acknowledgments
|
52 |
+
|
53 |
+
This model is trained with Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/) program.
|
bert/bert-base-japanese-v3/config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForPreTraining"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_dropout_prob": 0.1,
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 3072,
|
11 |
+
"layer_norm_eps": 1e-12,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "bert",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 12,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"vocab_size": 32768
|
19 |
+
}
|
bert/bert-base-japanese-v3/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e172862e0674054d65e0ba40d67df2a4687982f589db44aa27091c386e5450a4
|
3 |
+
size 447406217
|
bert/bert-base-japanese-v3/tokenizer_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
3 |
+
"model_max_length": 512,
|
4 |
+
"do_lower_case": false,
|
5 |
+
"word_tokenizer_type": "mecab",
|
6 |
+
"subword_tokenizer_type": "wordpiece",
|
7 |
+
"mecab_kwargs": {
|
8 |
+
"mecab_dic": "unidic_lite"
|
9 |
+
}
|
10 |
+
}
|
bert/bert-base-japanese-v3/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bert/chinese-roberta-wwm-ext-large/.gitattributes
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
bert/chinese-roberta-wwm-ext-large/.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.bin
|
bert/chinese-roberta-wwm-ext-large/README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
tags:
|
5 |
+
- bert
|
6 |
+
license: "apache-2.0"
|
7 |
+
---
|
8 |
+
|
9 |
+
# Please use 'Bert' related functions to load this model!
|
10 |
+
|
11 |
+
## Chinese BERT with Whole Word Masking
|
12 |
+
For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.
|
13 |
+
|
14 |
+
**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**
|
15 |
+
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
|
16 |
+
|
17 |
+
This repository is developed based on:https://github.com/google-research/bert
|
18 |
+
|
19 |
+
You may also interested in,
|
20 |
+
- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
|
21 |
+
- Chinese MacBERT: https://github.com/ymcui/MacBERT
|
22 |
+
- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
|
23 |
+
- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
|
24 |
+
- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
|
25 |
+
|
26 |
+
More resources by HFL: https://github.com/ymcui/HFL-Anthology
|
27 |
+
|
28 |
+
## Citation
|
29 |
+
If you find the technical report or resource is useful, please cite the following technical report in your paper.
|
30 |
+
- Primary: https://arxiv.org/abs/2004.13922
|
31 |
+
```
|
32 |
+
@inproceedings{cui-etal-2020-revisiting,
|
33 |
+
title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
|
34 |
+
author = "Cui, Yiming and
|
35 |
+
Che, Wanxiang and
|
36 |
+
Liu, Ting and
|
37 |
+
Qin, Bing and
|
38 |
+
Wang, Shijin and
|
39 |
+
Hu, Guoping",
|
40 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
|
41 |
+
month = nov,
|
42 |
+
year = "2020",
|
43 |
+
address = "Online",
|
44 |
+
publisher = "Association for Computational Linguistics",
|
45 |
+
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
|
46 |
+
pages = "657--668",
|
47 |
+
}
|
48 |
+
```
|
49 |
+
- Secondary: https://arxiv.org/abs/1906.08101
|
50 |
+
```
|
51 |
+
@article{chinese-bert-wwm,
|
52 |
+
title={Pre-Training with Whole Word Masking for Chinese BERT},
|
53 |
+
author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
|
54 |
+
journal={arXiv preprint arXiv:1906.08101},
|
55 |
+
year={2019}
|
56 |
+
}
|
57 |
+
```
|
bert/chinese-roberta-wwm-ext-large/added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
bert/chinese-roberta-wwm-ext-large/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"directionality": "bidi",
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"output_past": true,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pooler_fc_size": 768,
|
22 |
+
"pooler_num_attention_heads": 12,
|
23 |
+
"pooler_num_fc_layers": 3,
|
24 |
+
"pooler_size_per_head": 128,
|
25 |
+
"pooler_type": "first_token_transform",
|
26 |
+
"type_vocab_size": 2,
|
27 |
+
"vocab_size": 21128
|
28 |
+
}
|
bert/chinese-roberta-wwm-ext-large/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
bert/chinese-roberta-wwm-ext-large/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bert/chinese-roberta-wwm-ext-large/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"init_inputs": []}
|
bert/chinese-roberta-wwm-ext-large/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bert_gen.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from multiprocessing import Pool
|
3 |
+
import commons
|
4 |
+
import utils
|
5 |
+
from tqdm import tqdm
|
6 |
+
from text import cleaned_text_to_sequence, get_bert
|
7 |
+
import argparse
|
8 |
+
import torch.multiprocessing as mp
|
9 |
+
|
10 |
+
import os
|
11 |
+
os.environ['http_proxy'] = 'http://localhost:11796'
|
12 |
+
os.environ['https_proxy'] = 'http://localhost:11796'
|
13 |
+
def process_line(line):
|
14 |
+
rank = mp.current_process()._identity
|
15 |
+
rank = rank[0] if len(rank) > 0 else 0
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
gpu_id = rank % torch.cuda.device_count()
|
18 |
+
device = torch.device(f"cuda:{gpu_id}")
|
19 |
+
wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|")
|
20 |
+
phone = phones.split(" ")
|
21 |
+
tone = [int(i) for i in tone.split(" ")]
|
22 |
+
word2ph = [int(i) for i in word2ph.split(" ")]
|
23 |
+
word2ph = [i for i in word2ph]
|
24 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
25 |
+
|
26 |
+
phone = commons.intersperse(phone, 0)
|
27 |
+
tone = commons.intersperse(tone, 0)
|
28 |
+
language = commons.intersperse(language, 0)
|
29 |
+
for i in range(len(word2ph)):
|
30 |
+
word2ph[i] = word2ph[i] * 2
|
31 |
+
word2ph[0] += 1
|
32 |
+
|
33 |
+
bert_path = wav_path.replace(".wav", ".bert.pt")
|
34 |
+
|
35 |
+
try:
|
36 |
+
bert = torch.load(bert_path)
|
37 |
+
assert bert.shape[-1] == len(phone)
|
38 |
+
except Exception:
|
39 |
+
bert = get_bert(text, word2ph, language_str, device)
|
40 |
+
assert bert.shape[-1] == len(phone)
|
41 |
+
torch.save(bert, bert_path)
|
42 |
+
|
43 |
+
|
44 |
+
if __name__ == "__main__":
|
45 |
+
parser = argparse.ArgumentParser()
|
46 |
+
parser.add_argument("-c", "--config", type=str, default="configs/config.json")
|
47 |
+
parser.add_argument("--num_processes", type=int, default=2)
|
48 |
+
args = parser.parse_args()
|
49 |
+
config_path = args.config
|
50 |
+
hps = utils.get_hparams_from_file(config_path)
|
51 |
+
lines = []
|
52 |
+
with open(hps.data.training_files, encoding="utf-8") as f:
|
53 |
+
lines.extend(f.readlines())
|
54 |
+
|
55 |
+
with open(hps.data.validation_files, encoding="utf-8") as f:
|
56 |
+
lines.extend(f.readlines())
|
57 |
+
|
58 |
+
num_processes = args.num_processes
|
59 |
+
with Pool(processes=num_processes) as pool:
|
60 |
+
for _ in tqdm(pool.imap_unordered(process_line, lines), total=len(lines)):
|
61 |
+
pass
|
commons.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def init_weights(m, mean=0.0, std=0.01):
|
7 |
+
classname = m.__class__.__name__
|
8 |
+
if classname.find("Conv") != -1:
|
9 |
+
m.weight.data.normal_(mean, std)
|
10 |
+
|
11 |
+
|
12 |
+
def get_padding(kernel_size, dilation=1):
|
13 |
+
return int((kernel_size * dilation - dilation) / 2)
|
14 |
+
|
15 |
+
|
16 |
+
def convert_pad_shape(pad_shape):
|
17 |
+
layer = pad_shape[::-1]
|
18 |
+
pad_shape = [item for sublist in layer for item in sublist]
|
19 |
+
return pad_shape
|
20 |
+
|
21 |
+
|
22 |
+
def intersperse(lst, item):
|
23 |
+
result = [item] * (len(lst) * 2 + 1)
|
24 |
+
result[1::2] = lst
|
25 |
+
return result
|
26 |
+
|
27 |
+
|
28 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
29 |
+
"""KL(P||Q)"""
|
30 |
+
kl = (logs_q - logs_p) - 0.5
|
31 |
+
kl += (
|
32 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
33 |
+
)
|
34 |
+
return kl
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel(shape):
|
38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
+
return -torch.log(-torch.log(uniform_samples))
|
41 |
+
|
42 |
+
|
43 |
+
def rand_gumbel_like(x):
|
44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
+
return g
|
46 |
+
|
47 |
+
|
48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
49 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
+
for i in range(x.size(0)):
|
51 |
+
idx_str = ids_str[i]
|
52 |
+
idx_end = idx_str + segment_size
|
53 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
54 |
+
return ret
|
55 |
+
|
56 |
+
|
57 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
58 |
+
b, d, t = x.size()
|
59 |
+
if x_lengths is None:
|
60 |
+
x_lengths = t
|
61 |
+
ids_str_max = x_lengths - segment_size + 1
|
62 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
63 |
+
ret = slice_segments(x, ids_str, segment_size)
|
64 |
+
return ret, ids_str
|
65 |
+
|
66 |
+
|
67 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
68 |
+
position = torch.arange(length, dtype=torch.float)
|
69 |
+
num_timescales = channels // 2
|
70 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
71 |
+
num_timescales - 1
|
72 |
+
)
|
73 |
+
inv_timescales = min_timescale * torch.exp(
|
74 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
75 |
+
)
|
76 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
77 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
78 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
79 |
+
signal = signal.view(1, channels, length)
|
80 |
+
return signal
|
81 |
+
|
82 |
+
|
83 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
84 |
+
b, channels, length = x.size()
|
85 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
86 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
87 |
+
|
88 |
+
|
89 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
90 |
+
b, channels, length = x.size()
|
91 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
92 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
93 |
+
|
94 |
+
|
95 |
+
def subsequent_mask(length):
|
96 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
97 |
+
return mask
|
98 |
+
|
99 |
+
|
100 |
+
@torch.jit.script
|
101 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
102 |
+
n_channels_int = n_channels[0]
|
103 |
+
in_act = input_a + input_b
|
104 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
105 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
106 |
+
acts = t_act * s_act
|
107 |
+
return acts
|
108 |
+
|
109 |
+
|
110 |
+
def convert_pad_shape(pad_shape):
|
111 |
+
layer = pad_shape[::-1]
|
112 |
+
pad_shape = [item for sublist in layer for item in sublist]
|
113 |
+
return pad_shape
|
114 |
+
|
115 |
+
|
116 |
+
def shift_1d(x):
|
117 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
118 |
+
return x
|
119 |
+
|
120 |
+
|
121 |
+
def sequence_mask(length, max_length=None):
|
122 |
+
if max_length is None:
|
123 |
+
max_length = length.max()
|
124 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
125 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
126 |
+
|
127 |
+
|
128 |
+
def generate_path(duration, mask):
|
129 |
+
"""
|
130 |
+
duration: [b, 1, t_x]
|
131 |
+
mask: [b, 1, t_y, t_x]
|
132 |
+
"""
|
133 |
+
|
134 |
+
b, _, t_y, t_x = mask.shape
|
135 |
+
cum_duration = torch.cumsum(duration, -1)
|
136 |
+
|
137 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
138 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
139 |
+
path = path.view(b, t_x, t_y)
|
140 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
141 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
142 |
+
return path
|
143 |
+
|
144 |
+
|
145 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
146 |
+
if isinstance(parameters, torch.Tensor):
|
147 |
+
parameters = [parameters]
|
148 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
149 |
+
norm_type = float(norm_type)
|
150 |
+
if clip_value is not None:
|
151 |
+
clip_value = float(clip_value)
|
152 |
+
|
153 |
+
total_norm = 0
|
154 |
+
for p in parameters:
|
155 |
+
if clip_value is not None:
|
156 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
157 |
+
param_norm = p.grad.data.norm(norm_type)
|
158 |
+
total_norm += param_norm.item() ** norm_type
|
159 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
160 |
+
return total_norm
|
configs/config.json
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 20,
|
4 |
+
"eval_interval": 500,
|
5 |
+
"seed": 52,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 0.0001,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 4,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 16384,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"skip_optimizer": true
|
22 |
+
},
|
23 |
+
"data": {
|
24 |
+
"training_files": "filelists/train.list",
|
25 |
+
"validation_files": "filelists/val.list",
|
26 |
+
"max_wav_value": 32768.0,
|
27 |
+
"sampling_rate": 44100,
|
28 |
+
"filter_length": 2048,
|
29 |
+
"hop_length": 512,
|
30 |
+
"win_length": 2048,
|
31 |
+
"n_mel_channels": 128,
|
32 |
+
"mel_fmin": 0.0,
|
33 |
+
"mel_fmax": null,
|
34 |
+
"add_blank": true,
|
35 |
+
"n_speakers": 256,
|
36 |
+
"cleaned_text": true,
|
37 |
+
"spk2id": {
|
38 |
+
"特别周": 0,
|
39 |
+
"无声铃鹿": 1,
|
40 |
+
"丸善斯基": 2,
|
41 |
+
"富士奇迹": 3,
|
42 |
+
"东海帝皇": 4,
|
43 |
+
"小栗帽": 5,
|
44 |
+
"黄金船": 6,
|
45 |
+
"伏特加": 7,
|
46 |
+
"大和赤骥": 8,
|
47 |
+
"菱亚马逊": 9,
|
48 |
+
"草上飞": 10,
|
49 |
+
"大树快车": 11,
|
50 |
+
"目白麦昆": 12,
|
51 |
+
"神鹰": 13,
|
52 |
+
"鲁道夫象征": 14,
|
53 |
+
"好歌剧": 15,
|
54 |
+
"成田白仁": 16,
|
55 |
+
"爱丽数码": 17,
|
56 |
+
"美妙姿势": 18,
|
57 |
+
"摩耶重炮": 19,
|
58 |
+
"玉藻十字": 20,
|
59 |
+
"琵琶晨光": 21,
|
60 |
+
"目白赖恩": 22,
|
61 |
+
"美浦波旁": 23,
|
62 |
+
"雪中美人": 24,
|
63 |
+
"米浴": 25,
|
64 |
+
"爱丽速子": 26,
|
65 |
+
"爱慕织姬": 27,
|
66 |
+
"曼城茶座": 28,
|
67 |
+
"气槽": 29,
|
68 |
+
"星云天空": 30,
|
69 |
+
"菱曙": 31,
|
70 |
+
"艾尼斯风神": 32,
|
71 |
+
"稻荷一": 33,
|
72 |
+
"空中神宫": 34,
|
73 |
+
"川上公主": 35,
|
74 |
+
"黄金城": 36,
|
75 |
+
"真机伶": 37,
|
76 |
+
"荣进闪耀": 38,
|
77 |
+
"采珠": 39,
|
78 |
+
"新光风": 40,
|
79 |
+
"超级小海湾": 41,
|
80 |
+
"荒漠英雄": 42,
|
81 |
+
"东瀛佐敦": 43,
|
82 |
+
"中山庆典": 44,
|
83 |
+
"成田大进": 45,
|
84 |
+
"西野花": 46,
|
85 |
+
"醒目飞鹰": 47,
|
86 |
+
"春乌拉拉": 48,
|
87 |
+
"青竹回忆": 49,
|
88 |
+
"待兼福来": 50,
|
89 |
+
"Mr CB": 51,
|
90 |
+
"美丽周日": 52,
|
91 |
+
"名将怒涛": 53,
|
92 |
+
"帝王光辉": 54,
|
93 |
+
"待兼诗歌剧": 55,
|
94 |
+
"生野狄杜斯": 56,
|
95 |
+
"优秀素质": 57,
|
96 |
+
"双涡轮": 58,
|
97 |
+
"目白多伯": 59,
|
98 |
+
"目白善信": 60,
|
99 |
+
"大拓太阳神": 61,
|
100 |
+
"北部玄驹": 62,
|
101 |
+
"目白阿尔丹": 63,
|
102 |
+
"八重无敌": 64,
|
103 |
+
"里见光钻": 65,
|
104 |
+
"天狼星象征": 66,
|
105 |
+
"樱花桂冠": 67,
|
106 |
+
"成田路": 68,
|
107 |
+
"也文摄辉": 69,
|
108 |
+
"吉兆": 70,
|
109 |
+
"鹤丸刚志": 71,
|
110 |
+
"谷野美酒": 72,
|
111 |
+
"第一红宝石": 73,
|
112 |
+
"目白高峰": 74,
|
113 |
+
"真弓快车": 75,
|
114 |
+
"里见皇冠": 76,
|
115 |
+
"高尚骏逸": 77,
|
116 |
+
"凯斯奇迹": 78,
|
117 |
+
"森林宝穴": 79,
|
118 |
+
"小林力奇": 80,
|
119 |
+
"奇瑞骏": 81,
|
120 |
+
"葛城王牌": 82,
|
121 |
+
"新宇宙": 83,
|
122 |
+
"菱钻奇宝": 84,
|
123 |
+
"望族": 85,
|
124 |
+
"骏川手纲": 86,
|
125 |
+
"秋川弥生": 87,
|
126 |
+
"乙名史悦子": 88,
|
127 |
+
"桐生院葵": 89,
|
128 |
+
"安心泽刺刺美": 90,
|
129 |
+
"达利阿拉伯": 91,
|
130 |
+
"高多芬柏布": 92,
|
131 |
+
"佐岳五月": 93,
|
132 |
+
"胜利奖券": 94,
|
133 |
+
"樱花进王": 95,
|
134 |
+
"东商变革": 96,
|
135 |
+
"微光飞驹": 97,
|
136 |
+
"樱花千代王": 98,
|
137 |
+
"跳舞城": 99,
|
138 |
+
"樫本理子": 100,
|
139 |
+
"明亮圣辉": 101,
|
140 |
+
"拜耶土耳其": 102
|
141 |
+
}
|
142 |
+
},
|
143 |
+
"model": {
|
144 |
+
"use_spk_conditioned_encoder": true,
|
145 |
+
"use_noise_scaled_mas": true,
|
146 |
+
"use_mel_posterior_encoder": false,
|
147 |
+
"use_duration_discriminator": true,
|
148 |
+
"inter_channels": 192,
|
149 |
+
"hidden_channels": 192,
|
150 |
+
"filter_channels": 768,
|
151 |
+
"n_heads": 2,
|
152 |
+
"n_layers": 6,
|
153 |
+
"kernel_size": 3,
|
154 |
+
"p_dropout": 0.1,
|
155 |
+
"resblock": "1",
|
156 |
+
"resblock_kernel_sizes": [
|
157 |
+
3,
|
158 |
+
7,
|
159 |
+
11
|
160 |
+
],
|
161 |
+
"resblock_dilation_sizes": [
|
162 |
+
[
|
163 |
+
1,
|
164 |
+
3,
|
165 |
+
5
|
166 |
+
],
|
167 |
+
[
|
168 |
+
1,
|
169 |
+
3,
|
170 |
+
5
|
171 |
+
],
|
172 |
+
[
|
173 |
+
1,
|
174 |
+
3,
|
175 |
+
5
|
176 |
+
]
|
177 |
+
],
|
178 |
+
"upsample_rates": [
|
179 |
+
8,
|
180 |
+
8,
|
181 |
+
2,
|
182 |
+
2,
|
183 |
+
2
|
184 |
+
],
|
185 |
+
"upsample_initial_channel": 512,
|
186 |
+
"upsample_kernel_sizes": [
|
187 |
+
16,
|
188 |
+
16,
|
189 |
+
8,
|
190 |
+
2,
|
191 |
+
2
|
192 |
+
],
|
193 |
+
"n_layers_q": 3,
|
194 |
+
"use_spectral_norm": false,
|
195 |
+
"gin_channels": 256
|
196 |
+
}
|
197 |
+
}
|
data_utils.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
import torch.utils.data
|
5 |
+
from tqdm import tqdm
|
6 |
+
from loguru import logger
|
7 |
+
import commons
|
8 |
+
from mel_processing import spectrogram_torch, mel_spectrogram_torch
|
9 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
10 |
+
from text import cleaned_text_to_sequence, get_bert
|
11 |
+
|
12 |
+
"""Multi speaker version"""
|
13 |
+
|
14 |
+
|
15 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
16 |
+
"""
|
17 |
+
1) loads audio, speaker_id, text pairs
|
18 |
+
2) normalizes text and converts them to sequences of integers
|
19 |
+
3) computes spectrograms from audio files.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, audiopaths_sid_text, hparams):
|
23 |
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
24 |
+
self.max_wav_value = hparams.max_wav_value
|
25 |
+
self.sampling_rate = hparams.sampling_rate
|
26 |
+
self.filter_length = hparams.filter_length
|
27 |
+
self.hop_length = hparams.hop_length
|
28 |
+
self.win_length = hparams.win_length
|
29 |
+
self.sampling_rate = hparams.sampling_rate
|
30 |
+
self.spk_map = hparams.spk2id
|
31 |
+
self.hparams = hparams
|
32 |
+
|
33 |
+
self.use_mel_spec_posterior = getattr(
|
34 |
+
hparams, "use_mel_posterior_encoder", False
|
35 |
+
)
|
36 |
+
if self.use_mel_spec_posterior:
|
37 |
+
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
|
38 |
+
|
39 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
40 |
+
|
41 |
+
self.add_blank = hparams.add_blank
|
42 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
43 |
+
self.max_text_len = getattr(hparams, "max_text_len", 300)
|
44 |
+
|
45 |
+
random.seed(1234)
|
46 |
+
random.shuffle(self.audiopaths_sid_text)
|
47 |
+
self._filter()
|
48 |
+
|
49 |
+
def _filter(self):
|
50 |
+
"""
|
51 |
+
Filter text & store spec lengths
|
52 |
+
"""
|
53 |
+
# Store spectrogram lengths for Bucketing
|
54 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
55 |
+
# spec_length = wav_length // hop_length
|
56 |
+
|
57 |
+
audiopaths_sid_text_new = []
|
58 |
+
lengths = []
|
59 |
+
skipped = 0
|
60 |
+
logger.info("Init dataset...")
|
61 |
+
for _id, spk, language, text, phones, tone, word2ph in tqdm(
|
62 |
+
self.audiopaths_sid_text
|
63 |
+
):
|
64 |
+
audiopath = f"{_id}"
|
65 |
+
if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len:
|
66 |
+
phones = phones.split(" ")
|
67 |
+
tone = [int(i) for i in tone.split(" ")]
|
68 |
+
word2ph = [int(i) for i in word2ph.split(" ")]
|
69 |
+
audiopaths_sid_text_new.append(
|
70 |
+
[audiopath, spk, language, text, phones, tone, word2ph]
|
71 |
+
)
|
72 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
73 |
+
else:
|
74 |
+
skipped += 1
|
75 |
+
logger.info(
|
76 |
+
"skipped: "
|
77 |
+
+ str(skipped)
|
78 |
+
+ ", total: "
|
79 |
+
+ str(len(self.audiopaths_sid_text))
|
80 |
+
)
|
81 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
82 |
+
self.lengths = lengths
|
83 |
+
|
84 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
85 |
+
# separate filename, speaker_id and text
|
86 |
+
audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text
|
87 |
+
|
88 |
+
bert, ja_bert, phones, tone, language = self.get_text(
|
89 |
+
text, word2ph, phones, tone, language, audiopath
|
90 |
+
)
|
91 |
+
|
92 |
+
spec, wav = self.get_audio(audiopath)
|
93 |
+
sid = torch.LongTensor([int(self.spk_map[sid])])
|
94 |
+
return (phones, spec, wav, sid, tone, language, bert, ja_bert)
|
95 |
+
|
96 |
+
def get_audio(self, filename):
|
97 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
98 |
+
if sampling_rate != self.sampling_rate:
|
99 |
+
raise ValueError(
|
100 |
+
"{} {} SR doesn't match target {} SR".format(
|
101 |
+
filename, sampling_rate, self.sampling_rate
|
102 |
+
)
|
103 |
+
)
|
104 |
+
audio_norm = audio / self.max_wav_value
|
105 |
+
audio_norm = audio_norm.unsqueeze(0)
|
106 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
107 |
+
if self.use_mel_spec_posterior:
|
108 |
+
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
|
109 |
+
try:
|
110 |
+
spec = torch.load(spec_filename)
|
111 |
+
except:
|
112 |
+
if self.use_mel_spec_posterior:
|
113 |
+
spec = mel_spectrogram_torch(
|
114 |
+
audio_norm,
|
115 |
+
self.filter_length,
|
116 |
+
self.n_mel_channels,
|
117 |
+
self.sampling_rate,
|
118 |
+
self.hop_length,
|
119 |
+
self.win_length,
|
120 |
+
self.hparams.mel_fmin,
|
121 |
+
self.hparams.mel_fmax,
|
122 |
+
center=False,
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
spec = spectrogram_torch(
|
126 |
+
audio_norm,
|
127 |
+
self.filter_length,
|
128 |
+
self.sampling_rate,
|
129 |
+
self.hop_length,
|
130 |
+
self.win_length,
|
131 |
+
center=False,
|
132 |
+
)
|
133 |
+
spec = torch.squeeze(spec, 0)
|
134 |
+
torch.save(spec, spec_filename)
|
135 |
+
return spec, audio_norm
|
136 |
+
|
137 |
+
def get_text(self, text, word2ph, phone, tone, language_str, wav_path):
|
138 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
139 |
+
if self.add_blank:
|
140 |
+
phone = commons.intersperse(phone, 0)
|
141 |
+
tone = commons.intersperse(tone, 0)
|
142 |
+
language = commons.intersperse(language, 0)
|
143 |
+
for i in range(len(word2ph)):
|
144 |
+
word2ph[i] = word2ph[i] * 2
|
145 |
+
word2ph[0] += 1
|
146 |
+
bert_path = wav_path.replace(".wav", ".bert.pt")
|
147 |
+
try:
|
148 |
+
bert = torch.load(bert_path)
|
149 |
+
assert bert.shape[-1] == len(phone)
|
150 |
+
except:
|
151 |
+
bert = get_bert(text, word2ph, language_str)
|
152 |
+
torch.save(bert, bert_path)
|
153 |
+
assert bert.shape[-1] == len(phone), phone
|
154 |
+
|
155 |
+
if language_str == "ZH":
|
156 |
+
bert = bert
|
157 |
+
ja_bert = torch.zeros(768, len(phone))
|
158 |
+
elif language_str == "JP":
|
159 |
+
ja_bert = bert
|
160 |
+
bert = torch.zeros(1024, len(phone))
|
161 |
+
else:
|
162 |
+
bert = torch.zeros(1024, len(phone))
|
163 |
+
ja_bert = torch.zeros(768, len(phone))
|
164 |
+
assert bert.shape[-1] == len(phone), (
|
165 |
+
bert.shape,
|
166 |
+
len(phone),
|
167 |
+
sum(word2ph),
|
168 |
+
p1,
|
169 |
+
p2,
|
170 |
+
t1,
|
171 |
+
t2,
|
172 |
+
pold,
|
173 |
+
pold2,
|
174 |
+
word2ph,
|
175 |
+
text,
|
176 |
+
w2pho,
|
177 |
+
)
|
178 |
+
phone = torch.LongTensor(phone)
|
179 |
+
tone = torch.LongTensor(tone)
|
180 |
+
language = torch.LongTensor(language)
|
181 |
+
return bert, ja_bert, phone, tone, language
|
182 |
+
|
183 |
+
def get_sid(self, sid):
|
184 |
+
sid = torch.LongTensor([int(sid)])
|
185 |
+
return sid
|
186 |
+
|
187 |
+
def __getitem__(self, index):
|
188 |
+
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
189 |
+
|
190 |
+
def __len__(self):
|
191 |
+
return len(self.audiopaths_sid_text)
|
192 |
+
|
193 |
+
|
194 |
+
class TextAudioSpeakerCollate:
|
195 |
+
"""Zero-pads model inputs and targets"""
|
196 |
+
|
197 |
+
def __init__(self, return_ids=False):
|
198 |
+
self.return_ids = return_ids
|
199 |
+
|
200 |
+
def __call__(self, batch):
|
201 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
202 |
+
PARAMS
|
203 |
+
------
|
204 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
205 |
+
"""
|
206 |
+
# Right zero-pad all one-hot text sequences to max input length
|
207 |
+
_, ids_sorted_decreasing = torch.sort(
|
208 |
+
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
209 |
+
)
|
210 |
+
|
211 |
+
max_text_len = max([len(x[0]) for x in batch])
|
212 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
213 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
214 |
+
|
215 |
+
text_lengths = torch.LongTensor(len(batch))
|
216 |
+
spec_lengths = torch.LongTensor(len(batch))
|
217 |
+
wav_lengths = torch.LongTensor(len(batch))
|
218 |
+
sid = torch.LongTensor(len(batch))
|
219 |
+
|
220 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
221 |
+
tone_padded = torch.LongTensor(len(batch), max_text_len)
|
222 |
+
language_padded = torch.LongTensor(len(batch), max_text_len)
|
223 |
+
bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
|
224 |
+
ja_bert_padded = torch.FloatTensor(len(batch), 768, max_text_len)
|
225 |
+
|
226 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
227 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
228 |
+
text_padded.zero_()
|
229 |
+
tone_padded.zero_()
|
230 |
+
language_padded.zero_()
|
231 |
+
spec_padded.zero_()
|
232 |
+
wav_padded.zero_()
|
233 |
+
bert_padded.zero_()
|
234 |
+
ja_bert_padded.zero_()
|
235 |
+
for i in range(len(ids_sorted_decreasing)):
|
236 |
+
row = batch[ids_sorted_decreasing[i]]
|
237 |
+
|
238 |
+
text = row[0]
|
239 |
+
text_padded[i, : text.size(0)] = text
|
240 |
+
text_lengths[i] = text.size(0)
|
241 |
+
|
242 |
+
spec = row[1]
|
243 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
244 |
+
spec_lengths[i] = spec.size(1)
|
245 |
+
|
246 |
+
wav = row[2]
|
247 |
+
wav_padded[i, :, : wav.size(1)] = wav
|
248 |
+
wav_lengths[i] = wav.size(1)
|
249 |
+
|
250 |
+
sid[i] = row[3]
|
251 |
+
|
252 |
+
tone = row[4]
|
253 |
+
tone_padded[i, : tone.size(0)] = tone
|
254 |
+
|
255 |
+
language = row[5]
|
256 |
+
language_padded[i, : language.size(0)] = language
|
257 |
+
|
258 |
+
bert = row[6]
|
259 |
+
bert_padded[i, :, : bert.size(1)] = bert
|
260 |
+
|
261 |
+
ja_bert = row[7]
|
262 |
+
ja_bert_padded[i, :, : ja_bert.size(1)] = ja_bert
|
263 |
+
|
264 |
+
return (
|
265 |
+
text_padded,
|
266 |
+
text_lengths,
|
267 |
+
spec_padded,
|
268 |
+
spec_lengths,
|
269 |
+
wav_padded,
|
270 |
+
wav_lengths,
|
271 |
+
sid,
|
272 |
+
tone_padded,
|
273 |
+
language_padded,
|
274 |
+
bert_padded,
|
275 |
+
ja_bert_padded,
|
276 |
+
)
|
277 |
+
|
278 |
+
|
279 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
280 |
+
"""
|
281 |
+
Maintain similar input lengths in a batch.
|
282 |
+
Length groups are specified by boundaries.
|
283 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
284 |
+
|
285 |
+
It removes samples which are not included in the boundaries.
|
286 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
287 |
+
"""
|
288 |
+
|
289 |
+
def __init__(
|
290 |
+
self,
|
291 |
+
dataset,
|
292 |
+
batch_size,
|
293 |
+
boundaries,
|
294 |
+
num_replicas=None,
|
295 |
+
rank=None,
|
296 |
+
shuffle=True,
|
297 |
+
):
|
298 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
299 |
+
self.lengths = dataset.lengths
|
300 |
+
self.batch_size = batch_size
|
301 |
+
self.boundaries = boundaries
|
302 |
+
|
303 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
304 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
305 |
+
self.num_samples = self.total_size // self.num_replicas
|
306 |
+
|
307 |
+
def _create_buckets(self):
|
308 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
309 |
+
for i in range(len(self.lengths)):
|
310 |
+
length = self.lengths[i]
|
311 |
+
idx_bucket = self._bisect(length)
|
312 |
+
if idx_bucket != -1:
|
313 |
+
buckets[idx_bucket].append(i)
|
314 |
+
|
315 |
+
try:
|
316 |
+
for i in range(len(buckets) - 1, 0, -1):
|
317 |
+
if len(buckets[i]) == 0:
|
318 |
+
buckets.pop(i)
|
319 |
+
self.boundaries.pop(i + 1)
|
320 |
+
assert all(len(bucket) > 0 for bucket in buckets)
|
321 |
+
# When one bucket is not traversed
|
322 |
+
except Exception as e:
|
323 |
+
print("Bucket warning ", e)
|
324 |
+
for i in range(len(buckets) - 1, -1, -1):
|
325 |
+
if len(buckets[i]) == 0:
|
326 |
+
buckets.pop(i)
|
327 |
+
self.boundaries.pop(i + 1)
|
328 |
+
|
329 |
+
num_samples_per_bucket = []
|
330 |
+
for i in range(len(buckets)):
|
331 |
+
len_bucket = len(buckets[i])
|
332 |
+
total_batch_size = self.num_replicas * self.batch_size
|
333 |
+
rem = (
|
334 |
+
total_batch_size - (len_bucket % total_batch_size)
|
335 |
+
) % total_batch_size
|
336 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
337 |
+
return buckets, num_samples_per_bucket
|
338 |
+
|
339 |
+
def __iter__(self):
|
340 |
+
# deterministically shuffle based on epoch
|
341 |
+
g = torch.Generator()
|
342 |
+
g.manual_seed(self.epoch)
|
343 |
+
|
344 |
+
indices = []
|
345 |
+
if self.shuffle:
|
346 |
+
for bucket in self.buckets:
|
347 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
348 |
+
else:
|
349 |
+
for bucket in self.buckets:
|
350 |
+
indices.append(list(range(len(bucket))))
|
351 |
+
|
352 |
+
batches = []
|
353 |
+
for i in range(len(self.buckets)):
|
354 |
+
bucket = self.buckets[i]
|
355 |
+
len_bucket = len(bucket)
|
356 |
+
if len_bucket == 0:
|
357 |
+
continue
|
358 |
+
ids_bucket = indices[i]
|
359 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
360 |
+
|
361 |
+
# add extra samples to make it evenly divisible
|
362 |
+
rem = num_samples_bucket - len_bucket
|
363 |
+
ids_bucket = (
|
364 |
+
ids_bucket
|
365 |
+
+ ids_bucket * (rem // len_bucket)
|
366 |
+
+ ids_bucket[: (rem % len_bucket)]
|
367 |
+
)
|
368 |
+
|
369 |
+
# subsample
|
370 |
+
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
371 |
+
|
372 |
+
# batching
|
373 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
374 |
+
batch = [
|
375 |
+
bucket[idx]
|
376 |
+
for idx in ids_bucket[
|
377 |
+
j * self.batch_size : (j + 1) * self.batch_size
|
378 |
+
]
|
379 |
+
]
|
380 |
+
batches.append(batch)
|
381 |
+
|
382 |
+
if self.shuffle:
|
383 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
384 |
+
batches = [batches[i] for i in batch_ids]
|
385 |
+
self.batches = batches
|
386 |
+
|
387 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
388 |
+
return iter(self.batches)
|
389 |
+
|
390 |
+
def _bisect(self, x, lo=0, hi=None):
|
391 |
+
if hi is None:
|
392 |
+
hi = len(self.boundaries) - 1
|
393 |
+
|
394 |
+
if hi > lo:
|
395 |
+
mid = (hi + lo) // 2
|
396 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
397 |
+
return mid
|
398 |
+
elif x <= self.boundaries[mid]:
|
399 |
+
return self._bisect(x, lo, mid)
|
400 |
+
else:
|
401 |
+
return self._bisect(x, mid + 1, hi)
|
402 |
+
else:
|
403 |
+
return -1
|
404 |
+
|
405 |
+
def __len__(self):
|
406 |
+
return self.num_samples // self.batch_size
|
generation_logs.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
logs/agnes_digital_爱丽数码_アグネスデジタル/G_10500.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:291c9cc3bf456908cd20f1f1381a6967e090007602b3fb57a5a345058de88a61
|
3 |
+
size 857922317
|
logs/agnes_digital_爱丽数码_アグネスデジタル/config.json
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 20,
|
4 |
+
"eval_interval": 500,
|
5 |
+
"seed": 52,
|
6 |
+
"epochs": 100,
|
7 |
+
"learning_rate": 1e-04,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 4,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 16384,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"skip_optimizer": true
|
22 |
+
},
|
23 |
+
"data": {
|
24 |
+
"training_files": "filelists/train.list",
|
25 |
+
"validation_files": "filelists/val.list",
|
26 |
+
"max_wav_value": 32768.0,
|
27 |
+
"sampling_rate": 44100,
|
28 |
+
"filter_length": 2048,
|
29 |
+
"hop_length": 512,
|
30 |
+
"win_length": 2048,
|
31 |
+
"n_mel_channels": 128,
|
32 |
+
"mel_fmin": 0.0,
|
33 |
+
"mel_fmax": null,
|
34 |
+
"add_blank": true,
|
35 |
+
"n_speakers": 256,
|
36 |
+
"cleaned_text": true,
|
37 |
+
"spk2id": {
|
38 |
+
"爱丽数码": 17
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"model": {
|
42 |
+
"use_spk_conditioned_encoder": true,
|
43 |
+
"use_noise_scaled_mas": true,
|
44 |
+
"use_mel_posterior_encoder": false,
|
45 |
+
"use_duration_discriminator": true,
|
46 |
+
"inter_channels": 192,
|
47 |
+
"hidden_channels": 192,
|
48 |
+
"filter_channels": 768,
|
49 |
+
"n_heads": 2,
|
50 |
+
"n_layers": 6,
|
51 |
+
"kernel_size": 3,
|
52 |
+
"p_dropout": 0.1,
|
53 |
+
"resblock": "1",
|
54 |
+
"resblock_kernel_sizes": [
|
55 |
+
3,
|
56 |
+
7,
|
57 |
+
11
|
58 |
+
],
|
59 |
+
"resblock_dilation_sizes": [
|
60 |
+
[
|
61 |
+
1,
|
62 |
+
3,
|
63 |
+
5
|
64 |
+
],
|
65 |
+
[
|
66 |
+
1,
|
67 |
+
3,
|
68 |
+
5
|
69 |
+
],
|
70 |
+
[
|
71 |
+
1,
|
72 |
+
3,
|
73 |
+
5
|
74 |
+
]
|
75 |
+
],
|
76 |
+
"upsample_rates": [
|
77 |
+
8,
|
78 |
+
8,
|
79 |
+
2,
|
80 |
+
2,
|
81 |
+
2
|
82 |
+
],
|
83 |
+
"upsample_initial_channel": 512,
|
84 |
+
"upsample_kernel_sizes": [
|
85 |
+
16,
|
86 |
+
16,
|
87 |
+
8,
|
88 |
+
2,
|
89 |
+
2
|
90 |
+
],
|
91 |
+
"n_layers_q": 3,
|
92 |
+
"use_spectral_norm": false,
|
93 |
+
"gin_channels": 256
|
94 |
+
}
|
95 |
+
}
|
logs/curren_chan_真机伶_カレンチャン/G_16000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:763b4474e5d9accc1ea3e646cae7cb743f1b26914cb55931c5302308e972fde3
|
3 |
+
size 857605376
|
logs/curren_chan_真机伶_カレンチャン/config.json
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 20,
|
4 |
+
"eval_interval": 500,
|
5 |
+
"seed": 52,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 3e-05,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 4,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 16384,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"skip_optimizer": true
|
22 |
+
},
|
23 |
+
"data": {
|
24 |
+
"training_files": "filelists/train.list",
|
25 |
+
"validation_files": "filelists/val.list",
|
26 |
+
"max_wav_value": 32768.0,
|
27 |
+
"sampling_rate": 44100,
|
28 |
+
"filter_length": 2048,
|
29 |
+
"hop_length": 512,
|
30 |
+
"win_length": 2048,
|
31 |
+
"n_mel_channels": 128,
|
32 |
+
"mel_fmin": 0.0,
|
33 |
+
"mel_fmax": null,
|
34 |
+
"add_blank": true,
|
35 |
+
"n_speakers": 256,
|
36 |
+
"cleaned_text": true,
|
37 |
+
"spk2id": {
|
38 |
+
"真机伶": 37
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"model": {
|
42 |
+
"use_spk_conditioned_encoder": true,
|
43 |
+
"use_noise_scaled_mas": true,
|
44 |
+
"use_mel_posterior_encoder": false,
|
45 |
+
"use_duration_discriminator": true,
|
46 |
+
"inter_channels": 192,
|
47 |
+
"hidden_channels": 192,
|
48 |
+
"filter_channels": 768,
|
49 |
+
"n_heads": 2,
|
50 |
+
"n_layers": 6,
|
51 |
+
"kernel_size": 3,
|
52 |
+
"p_dropout": 0.1,
|
53 |
+
"resblock": "1",
|
54 |
+
"resblock_kernel_sizes": [
|
55 |
+
3,
|
56 |
+
7,
|
57 |
+
11
|
58 |
+
],
|
59 |
+
"resblock_dilation_sizes": [
|
60 |
+
[
|
61 |
+
1,
|
62 |
+
3,
|
63 |
+
5
|
64 |
+
],
|
65 |
+
[
|
66 |
+
1,
|
67 |
+
3,
|
68 |
+
5
|
69 |
+
],
|
70 |
+
[
|
71 |
+
1,
|
72 |
+
3,
|
73 |
+
5
|
74 |
+
]
|
75 |
+
],
|
76 |
+
"upsample_rates": [
|
77 |
+
8,
|
78 |
+
8,
|
79 |
+
2,
|
80 |
+
2,
|
81 |
+
2
|
82 |
+
],
|
83 |
+
"upsample_initial_channel": 512,
|
84 |
+
"upsample_kernel_sizes": [
|
85 |
+
16,
|
86 |
+
16,
|
87 |
+
8,
|
88 |
+
2,
|
89 |
+
2
|
90 |
+
],
|
91 |
+
"n_layers_q": 3,
|
92 |
+
"use_spectral_norm": false,
|
93 |
+
"gin_channels": 256
|
94 |
+
}
|
95 |
+
}
|
logs/matikane_fukukitaru_待兼福来_マチカネフクキタル/DUR_10000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f14d296192581112b7c639951f05cda856a3d57825c0acb3509323bafba2036
|
3 |
+
size 6891415
|
logs/matikane_fukukitaru_待兼福来_マチカネフクキタル/G_10000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fce2c3fab390201a55f7c6ac6d93865ed222d172d965d460e902913f1ace8561
|
3 |
+
size 857922317
|
logs/matikane_fukukitaru_待兼福来_マチカネフクキタル/config.json
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 20,
|
4 |
+
"eval_interval": 500,
|
5 |
+
"seed": 52,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 1e-04,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 4,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 16384,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"skip_optimizer": true
|
22 |
+
},
|
23 |
+
"data": {
|
24 |
+
"training_files": "filelists/train.list",
|
25 |
+
"validation_files": "filelists/val.list",
|
26 |
+
"max_wav_value": 32768.0,
|
27 |
+
"sampling_rate": 44100,
|
28 |
+
"filter_length": 2048,
|
29 |
+
"hop_length": 512,
|
30 |
+
"win_length": 2048,
|
31 |
+
"n_mel_channels": 128,
|
32 |
+
"mel_fmin": 0.0,
|
33 |
+
"mel_fmax": null,
|
34 |
+
"add_blank": true,
|
35 |
+
"n_speakers": 256,
|
36 |
+
"cleaned_text": true,
|
37 |
+
"spk2id": {
|
38 |
+
"待兼福来": 50
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"model": {
|
42 |
+
"use_spk_conditioned_encoder": true,
|
43 |
+
"use_noise_scaled_mas": true,
|
44 |
+
"use_mel_posterior_encoder": false,
|
45 |
+
"use_duration_discriminator": true,
|
46 |
+
"inter_channels": 192,
|
47 |
+
"hidden_channels": 192,
|
48 |
+
"filter_channels": 768,
|
49 |
+
"n_heads": 2,
|
50 |
+
"n_layers": 6,
|
51 |
+
"kernel_size": 3,
|
52 |
+
"p_dropout": 0.1,
|
53 |
+
"resblock": "1",
|
54 |
+
"resblock_kernel_sizes": [
|
55 |
+
3,
|
56 |
+
7,
|
57 |
+
11
|
58 |
+
],
|
59 |
+
"resblock_dilation_sizes": [
|
60 |
+
[
|
61 |
+
1,
|
62 |
+
3,
|
63 |
+
5
|
64 |
+
],
|
65 |
+
[
|
66 |
+
1,
|
67 |
+
3,
|
68 |
+
5
|
69 |
+
],
|
70 |
+
[
|
71 |
+
1,
|
72 |
+
3,
|
73 |
+
5
|
74 |
+
]
|
75 |
+
],
|
76 |
+
"upsample_rates": [
|
77 |
+
8,
|
78 |
+
8,
|
79 |
+
2,
|
80 |
+
2,
|
81 |
+
2
|
82 |
+
],
|
83 |
+
"upsample_initial_channel": 512,
|
84 |
+
"upsample_kernel_sizes": [
|
85 |
+
16,
|
86 |
+
16,
|
87 |
+
8,
|
88 |
+
2,
|
89 |
+
2
|
90 |
+
],
|
91 |
+
"n_layers_q": 3,
|
92 |
+
"use_spectral_norm": false,
|
93 |
+
"gin_channels": 256
|
94 |
+
}
|
95 |
+
}
|
logs/matikane_tannhauser_待兼诗歌剧_マチカネタンホイサ/G_20500.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbc10e790f66eccd4241b50bad798245474123e15858c11c80c79d97ee2fc3b5
|
3 |
+
size 857605376
|
logs/matikane_tannhauser_待兼诗歌剧_マチカネタンホイサ/config.json
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 20,
|
4 |
+
"eval_interval": 500,
|
5 |
+
"seed": 52,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 1e-04,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 4,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 16384,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"skip_optimizer": true
|
22 |
+
},
|
23 |
+
"data": {
|
24 |
+
"training_files": "filelists/train.list",
|
25 |
+
"validation_files": "filelists/val.list",
|
26 |
+
"max_wav_value": 32768.0,
|
27 |
+
"sampling_rate": 44100,
|
28 |
+
"filter_length": 2048,
|
29 |
+
"hop_length": 512,
|
30 |
+
"win_length": 2048,
|
31 |
+
"n_mel_channels": 128,
|
32 |
+
"mel_fmin": 0.0,
|
33 |
+
"mel_fmax": null,
|
34 |
+
"add_blank": true,
|
35 |
+
"n_speakers": 256,
|
36 |
+
"cleaned_text": true,
|
37 |
+
"spk2id": {
|
38 |
+
"待兼诗歌剧": 55
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"model": {
|
42 |
+
"use_spk_conditioned_encoder": true,
|
43 |
+
"use_noise_scaled_mas": true,
|
44 |
+
"use_mel_posterior_encoder": false,
|
45 |
+
"use_duration_discriminator": true,
|
46 |
+
"inter_channels": 192,
|
47 |
+
"hidden_channels": 192,
|
48 |
+
"filter_channels": 768,
|
49 |
+
"n_heads": 2,
|
50 |
+
"n_layers": 6,
|
51 |
+
"kernel_size": 3,
|
52 |
+
"p_dropout": 0.1,
|
53 |
+
"resblock": "1",
|
54 |
+
"resblock_kernel_sizes": [
|
55 |
+
3,
|
56 |
+
7,
|
57 |
+
11
|
58 |
+
],
|
59 |
+
"resblock_dilation_sizes": [
|
60 |
+
[
|
61 |
+
1,
|
62 |
+
3,
|
63 |
+
5
|
64 |
+
],
|
65 |
+
[
|
66 |
+
1,
|
67 |
+
3,
|
68 |
+
5
|
69 |
+
],
|
70 |
+
[
|
71 |
+
1,
|
72 |
+
3,
|
73 |
+
5
|
74 |
+
]
|
75 |
+
],
|
76 |
+
"upsample_rates": [
|
77 |
+
8,
|
78 |
+
8,
|
79 |
+
2,
|
80 |
+
2,
|
81 |
+
2
|
82 |
+
],
|
83 |
+
"upsample_initial_channel": 512,
|
84 |
+
"upsample_kernel_sizes": [
|
85 |
+
16,
|
86 |
+
16,
|
87 |
+
8,
|
88 |
+
2,
|
89 |
+
2
|
90 |
+
],
|
91 |
+
"n_layers_q": 3,
|
92 |
+
"use_spectral_norm": false,
|
93 |
+
"gin_channels": 256
|
94 |
+
}
|
95 |
+
}
|
logs/natuki/DUR_175000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:359a8dc9c44dcd49c8c6d9a50cbd379a19590e442c26f39856992641716c39ea
|
3 |
+
size 6885739
|
logs/natuki/DUR_61500.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25465948a009d6d889ef36e98732a8a9a8a2d05d9fef056f1a93197d8f1e4a67
|
3 |
+
size 6885739
|
logs/natuki/D_175000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cb03ef687b9351a124fcc4a867cb302030c8fefd5e260ebe72a45866cc583a1
|
3 |
+
size 561070567
|
logs/natuki/D_61500.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01544b4e98d419a7c649c3eac0dc4857d170eaa55364d94442298cfe7d9fc752
|
3 |
+
size 561070567
|
logs/natuki/G_175000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1381b7a3f3360afa5fdb5bd3ea920e027363157ac32a324423bd12f6ce7a15d3
|
3 |
+
size 857605376
|
logs/natuki/G_61500.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91bfc97f96ca2733bea7ce8f0ed51563bbc2975d21fc4bcd601c2b275d3fb736
|
3 |
+
size 857605376
|
logs/natuki/config.json
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 20,
|
4 |
+
"eval_interval": 500,
|
5 |
+
"seed": 52,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 0.00001,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 4,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 16384,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"skip_optimizer": true
|
22 |
+
},
|
23 |
+
"data": {
|
24 |
+
"training_files": "filelists/train.list",
|
25 |
+
"validation_files": "filelists/val.list",
|
26 |
+
"max_wav_value": 32768.0,
|
27 |
+
"sampling_rate": 44100,
|
28 |
+
"filter_length": 2048,
|
29 |
+
"hop_length": 512,
|
30 |
+
"win_length": 2048,
|
31 |
+
"n_mel_channels": 128,
|
32 |
+
"mel_fmin": 0.0,
|
33 |
+
"mel_fmax": null,
|
34 |
+
"add_blank": true,
|
35 |
+
"n_speakers": 256,
|
36 |
+
"cleaned_text": true,
|
37 |
+
"spk2id": {
|
38 |
+
"natuki1": 0,
|
39 |
+
"natuki2": 1
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"model": {
|
43 |
+
"use_spk_conditioned_encoder": true,
|
44 |
+
"use_noise_scaled_mas": true,
|
45 |
+
"use_mel_posterior_encoder": false,
|
46 |
+
"use_duration_discriminator": true,
|
47 |
+
"inter_channels": 192,
|
48 |
+
"hidden_channels": 192,
|
49 |
+
"filter_channels": 768,
|
50 |
+
"n_heads": 2,
|
51 |
+
"n_layers": 6,
|
52 |
+
"kernel_size": 3,
|
53 |
+
"p_dropout": 0.1,
|
54 |
+
"resblock": "1",
|
55 |
+
"resblock_kernel_sizes": [
|
56 |
+
3,
|
57 |
+
7,
|
58 |
+
11
|
59 |
+
],
|
60 |
+
"resblock_dilation_sizes": [
|
61 |
+
[
|
62 |
+
1,
|
63 |
+
3,
|
64 |
+
5
|
65 |
+
],
|
66 |
+
[
|
67 |
+
1,
|
68 |
+
3,
|
69 |
+
5
|
70 |
+
],
|
71 |
+
[
|
72 |
+
1,
|
73 |
+
3,
|
74 |
+
5
|
75 |
+
]
|
76 |
+
],
|
77 |
+
"upsample_rates": [
|
78 |
+
8,
|
79 |
+
8,
|
80 |
+
2,
|
81 |
+
2,
|
82 |
+
2
|
83 |
+
],
|
84 |
+
"upsample_initial_channel": 512,
|
85 |
+
"upsample_kernel_sizes": [
|
86 |
+
16,
|
87 |
+
16,
|
88 |
+
8,
|
89 |
+
2,
|
90 |
+
2
|
91 |
+
],
|
92 |
+
"n_layers_q": 3,
|
93 |
+
"use_spectral_norm": false,
|
94 |
+
"gin_channels": 256
|
95 |
+
}
|
96 |
+
}
|
logs/rice_shower_米浴_ライスシャワー/G_16500.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c677ee5c4a832786d630b8e03f1e9f8d506a9d38df1e056aa847aca66a45803
|
3 |
+
size 857605376
|
logs/rice_shower_米浴_ライスシャワー/config.json
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 20,
|
4 |
+
"eval_interval": 500,
|
5 |
+
"seed": 52,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 1e-05,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 4,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 16384,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"skip_optimizer": true
|
22 |
+
},
|
23 |
+
"data": {
|
24 |
+
"training_files": "filelists/train.list",
|
25 |
+
"validation_files": "filelists/val.list",
|
26 |
+
"max_wav_value": 32768.0,
|
27 |
+
"sampling_rate": 44100,
|
28 |
+
"filter_length": 2048,
|
29 |
+
"hop_length": 512,
|
30 |
+
"win_length": 2048,
|
31 |
+
"n_mel_channels": 128,
|
32 |
+
"mel_fmin": 0.0,
|
33 |
+
"mel_fmax": null,
|
34 |
+
"add_blank": true,
|
35 |
+
"n_speakers": 256,
|
36 |
+
"cleaned_text": true,
|
37 |
+
"spk2id": {
|
38 |
+
"特别周": 0,
|
39 |
+
"无声铃鹿": 1,
|
40 |
+
"丸善斯基": 2,
|
41 |
+
"富士奇迹": 3,
|
42 |
+
"东海帝皇": 4,
|
43 |
+
"小栗帽": 5,
|
44 |
+
"黄金船": 6,
|
45 |
+
"伏特加": 7,
|
46 |
+
"大和赤骥": 8,
|
47 |
+
"菱亚马逊": 9,
|
48 |
+
"草上飞": 10,
|
49 |
+
"大树快车": 11,
|
50 |
+
"目白麦昆": 12,
|
51 |
+
"神鹰": 13,
|
52 |
+
"鲁道夫象征": 14,
|
53 |
+
"好歌剧": 15,
|
54 |
+
"成田白仁": 16,
|
55 |
+
"爱丽数码": 17,
|
56 |
+
"美妙姿势": 18,
|
57 |
+
"摩耶重炮": 19,
|
58 |
+
"玉藻十字": 20,
|
59 |
+
"琵琶晨光": 21,
|
60 |
+
"目白赖恩": 22,
|
61 |
+
"美浦波旁": 23,
|
62 |
+
"雪中美人": 24,
|
63 |
+
"米浴": 25,
|
64 |
+
"爱丽速子": 26,
|
65 |
+
"爱慕织姬": 27,
|
66 |
+
"曼城茶座": 28,
|
67 |
+
"气槽": 29,
|
68 |
+
"星云天空": 30,
|
69 |
+
"菱曙": 31,
|
70 |
+
"艾尼斯风神": 32,
|
71 |
+
"稻荷一": 33,
|
72 |
+
"空中神宫": 34,
|
73 |
+
"川上公主": 35,
|
74 |
+
"黄金城": 36,
|
75 |
+
"真机伶": 37,
|
76 |
+
"荣进闪耀": 38,
|
77 |
+
"采珠": 39,
|
78 |
+
"新光风": 40,
|
79 |
+
"超级小海湾": 41,
|
80 |
+
"荒漠英雄": 42,
|
81 |
+
"东瀛佐敦": 43,
|
82 |
+
"中山庆典": 44,
|
83 |
+
"成田大进": 45,
|
84 |
+
"西野花": 46,
|
85 |
+
"醒目飞鹰": 47,
|
86 |
+
"春乌拉拉": 48,
|
87 |
+
"青竹回忆": 49,
|
88 |
+
"待兼福来": 50,
|
89 |
+
"Mr CB": 51,
|
90 |
+
"美丽周日": 52,
|
91 |
+
"名将怒涛": 53,
|
92 |
+
"帝王光辉": 54,
|
93 |
+
"待兼诗歌剧": 55,
|
94 |
+
"生野狄杜斯": 56,
|
95 |
+
"优秀素质": 57,
|
96 |
+
"双涡轮": 58,
|
97 |
+
"目白多伯": 59,
|
98 |
+
"目白善信": 60,
|
99 |
+
"大拓太阳神": 61,
|
100 |
+
"北部玄驹": 62,
|
101 |
+
"目白阿尔丹": 63,
|
102 |
+
"八重无敌": 64,
|
103 |
+
"里见光钻": 65,
|
104 |
+
"天狼星象征": 66,
|
105 |
+
"樱花桂冠": 67,
|
106 |
+
"成田路": 68,
|
107 |
+
"也文摄辉": 69,
|
108 |
+
"吉兆": 70,
|
109 |
+
"鹤丸刚志": 71,
|
110 |
+
"谷野美酒": 72,
|
111 |
+
"第一红宝石": 73,
|
112 |
+
"目白高峰": 74,
|
113 |
+
"真弓快车": 75,
|
114 |
+
"里见皇冠": 76,
|
115 |
+
"高尚骏逸": 77,
|
116 |
+
"凯斯奇迹": 78,
|
117 |
+
"森林宝穴": 79,
|
118 |
+
"小林力奇": 80,
|
119 |
+
"奇瑞骏": 81,
|
120 |
+
"葛城王牌": 82,
|
121 |
+
"新宇宙": 83,
|
122 |
+
"菱钻奇宝": 84,
|
123 |
+
"望族": 85,
|
124 |
+
"骏川手纲": 86,
|
125 |
+
"秋川弥生": 87,
|
126 |
+
"乙名史悦子": 88,
|
127 |
+
"桐生院葵": 89,
|
128 |
+
"安心泽刺刺美": 90,
|
129 |
+
"达利阿拉伯": 91,
|
130 |
+
"高多芬柏布": 92,
|
131 |
+
"佐岳五月": 93,
|
132 |
+
"胜利奖券": 94,
|
133 |
+
"樱花进王": 95,
|
134 |
+
"东商变革": 96,
|
135 |
+
"微光飞驹": 97,
|
136 |
+
"樱花千代王": 98,
|
137 |
+
"跳舞城": 99,
|
138 |
+
"樫本理子": 100,
|
139 |
+
"明亮圣辉": 101,
|
140 |
+
"拜耶土耳其": 102
|
141 |
+
}
|
142 |
+
},
|
143 |
+
"model": {
|
144 |
+
"use_spk_conditioned_encoder": true,
|
145 |
+
"use_noise_scaled_mas": true,
|
146 |
+
"use_mel_posterior_encoder": false,
|
147 |
+
"use_duration_discriminator": true,
|
148 |
+
"inter_channels": 192,
|
149 |
+
"hidden_channels": 192,
|
150 |
+
"filter_channels": 768,
|
151 |
+
"n_heads": 2,
|
152 |
+
"n_layers": 6,
|
153 |
+
"kernel_size": 3,
|
154 |
+
"p_dropout": 0.1,
|
155 |
+
"resblock": "1",
|
156 |
+
"resblock_kernel_sizes": [
|
157 |
+
3,
|
158 |
+
7,
|
159 |
+
11
|
160 |
+
],
|
161 |
+
"resblock_dilation_sizes": [
|
162 |
+
[
|
163 |
+
1,
|
164 |
+
3,
|
165 |
+
5
|
166 |
+
],
|
167 |
+
[
|
168 |
+
1,
|
169 |
+
3,
|
170 |
+
5
|
171 |
+
],
|
172 |
+
[
|
173 |
+
1,
|
174 |
+
3,
|
175 |
+
5
|
176 |
+
]
|
177 |
+
],
|
178 |
+
"upsample_rates": [
|
179 |
+
8,
|
180 |
+
8,
|
181 |
+
2,
|
182 |
+
2,
|
183 |
+
2
|
184 |
+
],
|
185 |
+
"upsample_initial_channel": 512,
|
186 |
+
"upsample_kernel_sizes": [
|
187 |
+
16,
|
188 |
+
16,
|
189 |
+
8,
|
190 |
+
2,
|
191 |
+
2
|
192 |
+
],
|
193 |
+
"n_layers_q": 3,
|
194 |
+
"use_spectral_norm": false,
|
195 |
+
"gin_channels": 256
|
196 |
+
}
|
197 |
+
}
|
logs/satono_diamond_里见光钻_サトノダイヤモンド/G_10000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:245189693a17b8aa4f2bb0f80e07972b45df7821038f38c50875a44d16c22e6f
|
3 |
+
size 857922317
|
logs/satono_diamond_里见光钻_サトノダイヤモンド/config.json
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 20,
|
4 |
+
"eval_interval": 500,
|
5 |
+
"seed": 52,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 1e-04,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 4,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 16384,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"skip_optimizer": true
|
22 |
+
},
|
23 |
+
"data": {
|
24 |
+
"training_files": "filelists/train.list",
|
25 |
+
"validation_files": "filelists/val.list",
|
26 |
+
"max_wav_value": 32768.0,
|
27 |
+
"sampling_rate": 44100,
|
28 |
+
"filter_length": 2048,
|
29 |
+
"hop_length": 512,
|
30 |
+
"win_length": 2048,
|
31 |
+
"n_mel_channels": 128,
|
32 |
+
"mel_fmin": 0.0,
|
33 |
+
"mel_fmax": null,
|
34 |
+
"add_blank": true,
|
35 |
+
"n_speakers": 256,
|
36 |
+
"cleaned_text": true,
|
37 |
+
"spk2id": {
|
38 |
+
"里见光钻": 65
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"model": {
|
42 |
+
"use_spk_conditioned_encoder": true,
|
43 |
+
"use_noise_scaled_mas": true,
|
44 |
+
"use_mel_posterior_encoder": false,
|
45 |
+
"use_duration_discriminator": true,
|
46 |
+
"inter_channels": 192,
|
47 |
+
"hidden_channels": 192,
|
48 |
+
"filter_channels": 768,
|
49 |
+
"n_heads": 2,
|
50 |
+
"n_layers": 6,
|
51 |
+
"kernel_size": 3,
|
52 |
+
"p_dropout": 0.1,
|
53 |
+
"resblock": "1",
|
54 |
+
"resblock_kernel_sizes": [
|
55 |
+
3,
|
56 |
+
7,
|
57 |
+
11
|
58 |
+
],
|
59 |
+
"resblock_dilation_sizes": [
|
60 |
+
[
|
61 |
+
1,
|
62 |
+
3,
|
63 |
+
5
|
64 |
+
],
|
65 |
+
[
|
66 |
+
1,
|
67 |
+
3,
|
68 |
+
5
|
69 |
+
],
|
70 |
+
[
|
71 |
+
1,
|
72 |
+
3,
|
73 |
+
5
|
74 |
+
]
|
75 |
+
],
|
76 |
+
"upsample_rates": [
|
77 |
+
8,
|
78 |
+
8,
|
79 |
+
2,
|
80 |
+
2,
|
81 |
+
2
|
82 |
+
],
|
83 |
+
"upsample_initial_channel": 512,
|
84 |
+
"upsample_kernel_sizes": [
|
85 |
+
16,
|
86 |
+
16,
|
87 |
+
8,
|
88 |
+
2,
|
89 |
+
2
|
90 |
+
],
|
91 |
+
"n_layers_q": 3,
|
92 |
+
"use_spectral_norm": false,
|
93 |
+
"gin_channels": 256
|
94 |
+
}
|
95 |
+
}
|
losses.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def feature_loss(fmap_r, fmap_g):
|
5 |
+
loss = 0
|
6 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
7 |
+
for rl, gl in zip(dr, dg):
|
8 |
+
rl = rl.float().detach()
|
9 |
+
gl = gl.float()
|
10 |
+
loss += torch.mean(torch.abs(rl - gl))
|
11 |
+
|
12 |
+
return loss * 2
|
13 |
+
|
14 |
+
|
15 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
16 |
+
loss = 0
|
17 |
+
r_losses = []
|
18 |
+
g_losses = []
|
19 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
20 |
+
dr = dr.float()
|
21 |
+
dg = dg.float()
|
22 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
23 |
+
g_loss = torch.mean(dg**2)
|
24 |
+
loss += r_loss + g_loss
|
25 |
+
r_losses.append(r_loss.item())
|
26 |
+
g_losses.append(g_loss.item())
|
27 |
+
|
28 |
+
return loss, r_losses, g_losses
|
29 |
+
|
30 |
+
|
31 |
+
def generator_loss(disc_outputs):
|
32 |
+
loss = 0
|
33 |
+
gen_losses = []
|
34 |
+
for dg in disc_outputs:
|
35 |
+
dg = dg.float()
|
36 |
+
l = torch.mean((1 - dg) ** 2)
|
37 |
+
gen_losses.append(l)
|
38 |
+
loss += l
|
39 |
+
|
40 |
+
return loss, gen_losses
|
41 |
+
|
42 |
+
|
43 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
44 |
+
"""
|
45 |
+
z_p, logs_q: [b, h, t_t]
|
46 |
+
m_p, logs_p: [b, h, t_t]
|
47 |
+
"""
|
48 |
+
z_p = z_p.float()
|
49 |
+
logs_q = logs_q.float()
|
50 |
+
m_p = m_p.float()
|
51 |
+
logs_p = logs_p.float()
|
52 |
+
z_mask = z_mask.float()
|
53 |
+
|
54 |
+
kl = logs_p - logs_q - 0.5
|
55 |
+
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
56 |
+
kl = torch.sum(kl * z_mask)
|
57 |
+
l = kl / torch.sum(z_mask)
|
58 |
+
return l
|
mel_processing.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.utils.data
|
3 |
+
from librosa.filters import mel as librosa_mel_fn
|
4 |
+
|
5 |
+
MAX_WAV_VALUE = 32768.0
|
6 |
+
|
7 |
+
|
8 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
9 |
+
"""
|
10 |
+
PARAMS
|
11 |
+
------
|
12 |
+
C: compression factor
|
13 |
+
"""
|
14 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
15 |
+
|
16 |
+
|
17 |
+
def dynamic_range_decompression_torch(x, C=1):
|
18 |
+
"""
|
19 |
+
PARAMS
|
20 |
+
------
|
21 |
+
C: compression factor used to compress
|
22 |
+
"""
|
23 |
+
return torch.exp(x) / C
|
24 |
+
|
25 |
+
|
26 |
+
def spectral_normalize_torch(magnitudes):
|
27 |
+
output = dynamic_range_compression_torch(magnitudes)
|
28 |
+
return output
|
29 |
+
|
30 |
+
|
31 |
+
def spectral_de_normalize_torch(magnitudes):
|
32 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
33 |
+
return output
|
34 |
+
|
35 |
+
|
36 |
+
mel_basis = {}
|
37 |
+
hann_window = {}
|
38 |
+
|
39 |
+
|
40 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
41 |
+
if torch.min(y) < -1.0:
|
42 |
+
print("min value is ", torch.min(y))
|
43 |
+
if torch.max(y) > 1.0:
|
44 |
+
print("max value is ", torch.max(y))
|
45 |
+
|
46 |
+
global hann_window
|
47 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
48 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
49 |
+
if wnsize_dtype_device not in hann_window:
|
50 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
51 |
+
dtype=y.dtype, device=y.device
|
52 |
+
)
|
53 |
+
|
54 |
+
y = torch.nn.functional.pad(
|
55 |
+
y.unsqueeze(1),
|
56 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
57 |
+
mode="reflect",
|
58 |
+
)
|
59 |
+
y = y.squeeze(1)
|
60 |
+
|
61 |
+
spec = torch.stft(
|
62 |
+
y,
|
63 |
+
n_fft,
|
64 |
+
hop_length=hop_size,
|
65 |
+
win_length=win_size,
|
66 |
+
window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center,
|
68 |
+
pad_mode="reflect",
|
69 |
+
normalized=False,
|
70 |
+
onesided=True,
|
71 |
+
return_complex=False,
|
72 |
+
)
|
73 |
+
|
74 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
75 |
+
return spec
|
76 |
+
|
77 |
+
|
78 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
79 |
+
global mel_basis
|
80 |
+
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
81 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
82 |
+
if fmax_dtype_device not in mel_basis:
|
83 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
84 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
85 |
+
dtype=spec.dtype, device=spec.device
|
86 |
+
)
|
87 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
88 |
+
spec = spectral_normalize_torch(spec)
|
89 |
+
return spec
|
90 |
+
|
91 |
+
|
92 |
+
def mel_spectrogram_torch(
|
93 |
+
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
94 |
+
):
|
95 |
+
if torch.min(y) < -1.0:
|
96 |
+
print("min value is ", torch.min(y))
|
97 |
+
if torch.max(y) > 1.0:
|
98 |
+
print("max value is ", torch.max(y))
|
99 |
+
|
100 |
+
global mel_basis, hann_window
|
101 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
102 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
103 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
104 |
+
if fmax_dtype_device not in mel_basis:
|
105 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
106 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
107 |
+
dtype=y.dtype, device=y.device
|
108 |
+
)
|
109 |
+
if wnsize_dtype_device not in hann_window:
|
110 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
111 |
+
dtype=y.dtype, device=y.device
|
112 |
+
)
|
113 |
+
|
114 |
+
y = torch.nn.functional.pad(
|
115 |
+
y.unsqueeze(1),
|
116 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
117 |
+
mode="reflect",
|
118 |
+
)
|
119 |
+
y = y.squeeze(1)
|
120 |
+
|
121 |
+
spec = torch.stft(
|
122 |
+
y,
|
123 |
+
n_fft,
|
124 |
+
hop_length=hop_size,
|
125 |
+
win_length=win_size,
|
126 |
+
window=hann_window[wnsize_dtype_device],
|
127 |
+
center=center,
|
128 |
+
pad_mode="reflect",
|
129 |
+
normalized=False,
|
130 |
+
onesided=True,
|
131 |
+
return_complex=False,
|
132 |
+
)
|
133 |
+
|
134 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
135 |
+
|
136 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
137 |
+
spec = spectral_normalize_torch(spec)
|
138 |
+
|
139 |
+
return spec
|