Akito-UzukiP commited on
Commit
a5ffe22
0 Parent(s):
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +35 -0
  2. .gitignore +168 -0
  3. .pre-commit-config.yaml +25 -0
  4. 1.4.3 +0 -0
  5. LICENSE +661 -0
  6. README.md +12 -0
  7. app.py +260 -0
  8. app0.py +344 -0
  9. attentions.py +464 -0
  10. bert/bert-base-japanese-v3/README.md +53 -0
  11. bert/bert-base-japanese-v3/config.json +19 -0
  12. bert/bert-base-japanese-v3/pytorch_model.bin +3 -0
  13. bert/bert-base-japanese-v3/tokenizer_config.json +10 -0
  14. bert/bert-base-japanese-v3/vocab.txt +0 -0
  15. bert/chinese-roberta-wwm-ext-large/.gitattributes +9 -0
  16. bert/chinese-roberta-wwm-ext-large/.gitignore +1 -0
  17. bert/chinese-roberta-wwm-ext-large/README.md +57 -0
  18. bert/chinese-roberta-wwm-ext-large/added_tokens.json +1 -0
  19. bert/chinese-roberta-wwm-ext-large/config.json +28 -0
  20. bert/chinese-roberta-wwm-ext-large/special_tokens_map.json +1 -0
  21. bert/chinese-roberta-wwm-ext-large/tokenizer.json +0 -0
  22. bert/chinese-roberta-wwm-ext-large/tokenizer_config.json +1 -0
  23. bert/chinese-roberta-wwm-ext-large/vocab.txt +0 -0
  24. bert_gen.py +61 -0
  25. commons.py +160 -0
  26. configs/config.json +197 -0
  27. data_utils.py +406 -0
  28. generation_logs.txt +0 -0
  29. logs/agnes_digital_爱丽数码_アグネスデジタル/G_10500.pth +3 -0
  30. logs/agnes_digital_爱丽数码_アグネスデジタル/config.json +95 -0
  31. logs/curren_chan_真机伶_カレンチャン/G_16000.pth +3 -0
  32. logs/curren_chan_真机伶_カレンチャン/config.json +95 -0
  33. logs/matikane_fukukitaru_待兼福来_マチカネフクキタル/DUR_10000.pth +3 -0
  34. logs/matikane_fukukitaru_待兼福来_マチカネフクキタル/G_10000.pth +3 -0
  35. logs/matikane_fukukitaru_待兼福来_マチカネフクキタル/config.json +95 -0
  36. logs/matikane_tannhauser_待兼诗歌剧_マチカネタンホイサ/G_20500.pth +3 -0
  37. logs/matikane_tannhauser_待兼诗歌剧_マチカネタンホイサ/config.json +95 -0
  38. logs/natuki/DUR_175000.pth +3 -0
  39. logs/natuki/DUR_61500.pth +3 -0
  40. logs/natuki/D_175000.pth +3 -0
  41. logs/natuki/D_61500.pth +3 -0
  42. logs/natuki/G_175000.pth +3 -0
  43. logs/natuki/G_61500.pth +3 -0
  44. logs/natuki/config.json +96 -0
  45. logs/rice_shower_米浴_ライスシャワー/G_16500.pth +3 -0
  46. logs/rice_shower_米浴_ライスシャワー/config.json +197 -0
  47. logs/satono_diamond_里见光钻_サトノダイヤモンド/G_10000.pth +3 -0
  48. logs/satono_diamond_里见光钻_サトノダイヤモンド/config.json +95 -0
  49. losses.py +58 -0
  50. mel_processing.py +139 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
161
+
162
+ .DS_Store
163
+ /models
164
+
165
+ filelists/*
166
+ !/filelists/esd.list
167
+ data/*
168
+ /infer_save
.pre-commit-config.yaml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ repos:
2
+ - repo: https://github.com/pre-commit/pre-commit-hooks
3
+ rev: v4.4.0
4
+ hooks:
5
+ - id: check-yaml
6
+ - id: end-of-file-fixer
7
+ - id: trailing-whitespace
8
+
9
+ - repo: https://github.com/astral-sh/ruff-pre-commit
10
+ rev: v0.0.292
11
+ hooks:
12
+ - id: ruff
13
+ args: [ --fix ]
14
+
15
+ - repo: https://github.com/psf/black
16
+ rev: 23.9.1
17
+ hooks:
18
+ - id: black
19
+
20
+ - repo: https://github.com/codespell-project/codespell
21
+ rev: v2.2.6
22
+ hooks:
23
+ - id: codespell
24
+ files: ^.*\.(py|md|rst|yml)$
25
+ args: [-L=fro]
1.4.3 ADDED
Binary file (330 Bytes). View file
 
LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published
637
+ by the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Umamusume Bert Vits2
3
+ emoji: 📊
4
+ colorFrom: red
5
+ colorTo: green
6
+ sdk: gradio
7
+ sdk_version: 3.47.1
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: E402
2
+
3
+ import sys, os
4
+ import logging
5
+ import os
6
+ import time
7
+ import numpy as np # 假设你使用NumPy来处理音频数据
8
+ import shutil # 用于删除文件夹和文件
9
+ from scipy.io import wavfile
10
+ import re
11
+ logging.getLogger("numba").setLevel(logging.WARNING)
12
+ logging.getLogger("markdown_it").setLevel(logging.WARNING)
13
+ logging.getLogger("urllib3").setLevel(logging.WARNING)
14
+ logging.getLogger("matplotlib").setLevel(logging.WARNING)
15
+
16
+ logging.basicConfig(
17
+ level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
18
+ )
19
+
20
+ logger = logging.getLogger(__name__)
21
+
22
+ import torch
23
+ import argparse
24
+ import commons
25
+ import utils
26
+ from models import SynthesizerTrn
27
+ from text.symbols import symbols
28
+ from text import cleaned_text_to_sequence, get_bert
29
+ from text.cleaner import clean_text
30
+ import gradio as gr
31
+ import webbrowser
32
+ import numpy as np
33
+
34
+ net_g = None
35
+ device = "cuda"
36
+ curr_model_name:str = None
37
+ hps_:tuple = None
38
+ def get_text(text, language_str, hps):
39
+ norm_text, phone, tone, word2ph = clean_text(text, language_str)
40
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
41
+
42
+ if hps.data.add_blank:
43
+ phone = commons.intersperse(phone, 0)
44
+ tone = commons.intersperse(tone, 0)
45
+ language = commons.intersperse(language, 0)
46
+ for i in range(len(word2ph)):
47
+ word2ph[i] = word2ph[i] * 2
48
+ word2ph[0] += 1
49
+ bert = get_bert(norm_text, word2ph, language_str, device)
50
+ del word2ph
51
+ assert bert.shape[-1] == len(phone), phone
52
+
53
+ if language_str == "ZH":
54
+ bert = bert
55
+ ja_bert = torch.zeros(768, len(phone))
56
+ elif language_str == "JP":
57
+ ja_bert = bert
58
+ bert = torch.zeros(1024, len(phone))
59
+ else:
60
+ bert = torch.zeros(1024, len(phone))
61
+ ja_bert = torch.zeros(768, len(phone))
62
+
63
+ assert bert.shape[-1] == len(
64
+ phone
65
+ ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
66
+
67
+ phone = torch.LongTensor(phone)
68
+ tone = torch.LongTensor(tone)
69
+ language = torch.LongTensor(language)
70
+ return bert, ja_bert, phone, tone, language
71
+
72
+
73
+ def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
74
+ global net_g
75
+ bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
76
+ with torch.no_grad():
77
+ x_tst = phones.to(device).unsqueeze(0)
78
+ tones = tones.to(device).unsqueeze(0)
79
+ lang_ids = lang_ids.to(device).unsqueeze(0)
80
+ bert = bert.to(device).unsqueeze(0)
81
+ ja_bert = ja_bert.to(device).unsqueeze(0)
82
+ x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
83
+ #print(x_tst.type(), tones.type(), lang_ids.type(), bert.type(), ja_bert.type(), x_tst_lengths.type())
84
+ del phones
85
+ speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
86
+ audio = (
87
+ net_g.infer(
88
+ x_tst,
89
+ x_tst_lengths,
90
+ speakers,
91
+ tones,
92
+ lang_ids,
93
+ bert,
94
+ ja_bert,
95
+ sdp_ratio=sdp_ratio,
96
+ noise_scale=noise_scale,
97
+ noise_scale_w=noise_scale_w,
98
+ length_scale=length_scale,
99
+ )[0][0, 0]
100
+ .data.cpu()
101
+ .float()
102
+ .numpy()
103
+ )
104
+ del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
105
+ torch.cuda.empty_cache()
106
+ return audio
107
+
108
+ __LOG__ = "./generation_logs.txt"
109
+ def tts_fn(text, model_name:str, sdp_ratio, noise_scale, noise_scale_w, length_scale, language):
110
+ global curr_model_name
111
+ if curr_model_name != model_name:
112
+ load_model(model_name)
113
+ # 清空 ./infer_save 文件夹
114
+ if os.path.exists('./infer_save'):
115
+ shutil.rmtree('./infer_save')
116
+ os.makedirs('./infer_save')
117
+
118
+ slices = text.split("\n")
119
+ slices = [slice for slice in slices if slice.strip() != ""]
120
+ audio_list = []
121
+ with torch.no_grad():
122
+ with open(__LOG__,"a",encoding="UTF-8") as f:
123
+ for slice in slices:
124
+ assert len(slice) < 250 # 限制输入的文本长度
125
+ audio = infer(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=list(hps_[curr_model_name].data.spk2id.keys())[0], language=language)
126
+ audio_list.append(audio)
127
+
128
+ # 创建唯一的文件名
129
+ timestamp = str(int(time.time() * 1000))
130
+ audio_file_path = f'./infer_save/audio_{timestamp}.wav'
131
+
132
+ # 保存音频数据到.wav文件
133
+ wavfile.write(audio_file_path, hps.data.sampling_rate, audio)
134
+
135
+ silence = np.zeros(int(hps.data.sampling_rate/2), dtype=np.int16) # 生成半秒的静音
136
+ audio_list.append(silence) # 将静音添加到列表中
137
+
138
+ f.write(f"{slice} | {curr_model_name}\n")
139
+ print(f"{slice} | {curr_model_name}")
140
+
141
+ audio_concat = np.concatenate(audio_list)
142
+ return "Success", (hps.data.sampling_rate, audio_concat)
143
+
144
+
145
+ def load_model(model_name:str):
146
+ global net_g,curr_model_name,hps_,hps
147
+ assert os.path.exists(os.path.join("logs",model_name))
148
+ curr_model_name = model_name
149
+ hps = hps_[curr_model_name]
150
+ all_files = os.listdir(os.path.join("logs",model_name))
151
+ hps = utils.get_hparams_from_file(os.path.join("logs",model_name,"config.json"))
152
+ net_g = SynthesizerTrn(
153
+ len(symbols),
154
+ hps.data.filter_length // 2 + 1,
155
+ hps.train.segment_size // hps.data.hop_length,
156
+ n_speakers=hps.data.n_speakers,
157
+ **hps.model,
158
+ ).to(device)
159
+ _ = net_g.eval()
160
+ #获取G_最大的模型:
161
+ g_files = [f for f in all_files if f.startswith('G_') and f.endswith('.pth')]
162
+
163
+ # 提取文件名中的数字,并找到最大的数字
164
+ max_num = -1
165
+ max_file = None
166
+ for f in g_files:
167
+ num = int(re.search(r'G_(\d+).pth', f).group(1))
168
+ if num > max_num:
169
+ max_num = num
170
+ max_file = f
171
+
172
+ # 加载对应的模型
173
+ if max_file:
174
+ file_path = os.path.join('./logs/',model_name, max_file)
175
+ _ = utils.load_checkpoint(file_path, net_g, None, skip_optimizer=True)
176
+ else:
177
+ print("没有找到合适的文件")
178
+
179
+ if __name__ == "__main__":
180
+
181
+
182
+ models = os.listdir("./logs")
183
+ hps_ = {}
184
+ for i in models:
185
+ hps_[i] = utils.get_hparams_from_file(os.path.join("./logs", i, "config.json"))
186
+ curr_model_name = models[0]
187
+ hps = hps_[curr_model_name]
188
+
189
+ # speaker_ids = hps.data.spk2id
190
+ # speakers = list(speaker_ids.keys())
191
+ device = (
192
+ "cuda:0"
193
+ if torch.cuda.is_available()
194
+ else (
195
+ "mps"
196
+ if sys.platform == "darwin" and torch.backends.mps.is_available()
197
+ else "cpu"
198
+ )
199
+ )
200
+ net_g = SynthesizerTrn(
201
+ len(symbols),
202
+ hps.data.filter_length // 2 + 1,
203
+ hps.train.segment_size // hps.data.hop_length,
204
+ n_speakers=hps.data.n_speakers,
205
+ **hps.model,
206
+ ).to(device)
207
+ _ = net_g.eval()
208
+
209
+ languages = ["ZH", "JP"]
210
+ with gr.Blocks() as app:
211
+ with gr.Tab(label="umamusume"):
212
+ with gr.Row():
213
+ with gr.Column():
214
+ text = gr.TextArea(
215
+ label="Text",
216
+ placeholder="Input Text Here",
217
+ value="はりきっていこう!",
218
+ )
219
+ speaker = gr.Dropdown(
220
+ choices=models, value=models[0], label="Models"
221
+ )
222
+ with gr.Accordion("Settings",open=False):
223
+ sdp_ratio = gr.Slider(
224
+ minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
225
+ )
226
+ noise_scale = gr.Slider(
227
+ minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
228
+ )
229
+ noise_scale_w = gr.Slider(
230
+ minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
231
+ )
232
+ length_scale = gr.Slider(
233
+ minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
234
+ )
235
+ language = gr.Dropdown(
236
+ choices=languages, value=languages[1], label="Language"
237
+ )
238
+ btn = gr.Button("Generate!", variant="primary")
239
+ with gr.Column():
240
+ text_output = gr.Textbox(label="Message")
241
+ audio_output = gr.Audio(label="Output Audio")
242
+ gr.Markdown("# 赛马娘 Bert-VITS2 语音合成\n"
243
+ "Project page:[GitHub](https://github.com/fishaudio/Bert-VITS2)\n"
244
+ "- Still Updating...\n"
245
+ "- We found that model trained with only 1 speaker may generate better audio than multi-speaker model.\n")
246
+
247
+ btn.click(
248
+ tts_fn,
249
+ inputs=[
250
+ text,
251
+ speaker,
252
+ sdp_ratio,
253
+ noise_scale,
254
+ noise_scale_w,
255
+ length_scale,
256
+ language,
257
+ ],
258
+ outputs=[text_output, audio_output],
259
+ )
260
+ app.launch(server_name="0.0.0.0")
app0.py ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: E402
2
+
3
+ import sys, os
4
+ import logging
5
+ import os
6
+ import time
7
+ import numpy as np # 假设你使用NumPy来处理音频数据
8
+ import shutil # 用于删除文件夹和文件
9
+ from scipy.io import wavfile
10
+
11
+ logging.getLogger("numba").setLevel(logging.WARNING)
12
+ logging.getLogger("markdown_it").setLevel(logging.WARNING)
13
+ logging.getLogger("urllib3").setLevel(logging.WARNING)
14
+ logging.getLogger("matplotlib").setLevel(logging.WARNING)
15
+
16
+ logging.basicConfig(
17
+ level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
18
+ )
19
+
20
+ logger = logging.getLogger(__name__)
21
+
22
+ import torch
23
+ import argparse
24
+ import commons
25
+ import utils
26
+ from models import SynthesizerTrn
27
+ from text.symbols import symbols
28
+ from text import cleaned_text_to_sequence, get_bert
29
+ from text.cleaner import clean_text
30
+ import gradio as gr
31
+ import webbrowser
32
+ import numpy as np
33
+
34
+ net_g = None
35
+
36
+ if sys.platform == "darwin" and torch.backends.mps.is_available():
37
+ device = "mps"
38
+ os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
39
+ else:
40
+ device = "cuda"
41
+
42
+
43
+ def get_text(text, language_str, hps):
44
+ norm_text, phone, tone, word2ph = clean_text(text, language_str)
45
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
46
+
47
+ if hps.data.add_blank:
48
+ phone = commons.intersperse(phone, 0)
49
+ tone = commons.intersperse(tone, 0)
50
+ language = commons.intersperse(language, 0)
51
+ for i in range(len(word2ph)):
52
+ word2ph[i] = word2ph[i] * 2
53
+ word2ph[0] += 1
54
+ bert = get_bert(norm_text, word2ph, language_str, device)
55
+ del word2ph
56
+ assert bert.shape[-1] == len(phone), phone
57
+
58
+ if language_str == "ZH":
59
+ bert = bert
60
+ ja_bert = torch.zeros(768, len(phone))
61
+ elif language_str == "JP":
62
+ ja_bert = bert
63
+ bert = torch.zeros(1024, len(phone))
64
+ else:
65
+ bert = torch.zeros(1024, len(phone))
66
+ ja_bert = torch.zeros(768, len(phone))
67
+
68
+ assert bert.shape[-1] == len(
69
+ phone
70
+ ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
71
+
72
+ phone = torch.LongTensor(phone)
73
+ tone = torch.LongTensor(tone)
74
+ language = torch.LongTensor(language)
75
+ return bert, ja_bert, phone, tone, language
76
+
77
+
78
+ def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
79
+ global net_g
80
+ bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
81
+ with torch.no_grad():
82
+ x_tst = phones.to(device).unsqueeze(0)
83
+ tones = tones.to(device).unsqueeze(0)
84
+ lang_ids = lang_ids.to(device).unsqueeze(0)
85
+ bert = bert.to(device).unsqueeze(0)
86
+ ja_bert = ja_bert.to(device).unsqueeze(0)
87
+ x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
88
+ #print(x_tst.type(), tones.type(), lang_ids.type(), bert.type(), ja_bert.type(), x_tst_lengths.type())
89
+ del phones
90
+ speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
91
+ audio = (
92
+ net_g.infer(
93
+ x_tst,
94
+ x_tst_lengths,
95
+ speakers,
96
+ tones,
97
+ lang_ids,
98
+ bert,
99
+ ja_bert,
100
+ sdp_ratio=sdp_ratio,
101
+ noise_scale=noise_scale,
102
+ noise_scale_w=noise_scale_w,
103
+ length_scale=length_scale,
104
+ )[0][0, 0]
105
+ .data.cpu()
106
+ .float()
107
+ .numpy()
108
+ )
109
+ del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
110
+ torch.cuda.empty_cache()
111
+ return audio
112
+
113
+ def infer_2(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
114
+ global net_g_2
115
+ bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
116
+ with torch.no_grad():
117
+ x_tst = phones.to(device).unsqueeze(0)
118
+ tones = tones.to(device).unsqueeze(0)
119
+ lang_ids = lang_ids.to(device).unsqueeze(0)
120
+ bert = bert.to(device).unsqueeze(0)
121
+ ja_bert = ja_bert.to(device).unsqueeze(0)
122
+ x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
123
+ #print(x_tst.type(), tones.type(), lang_ids.type(), bert.type(), ja_bert.type(), x_tst_lengths.type())
124
+ del phones
125
+ speakers = torch.LongTensor([hps_2.data.spk2id[sid]]).to(device)
126
+ audio = (
127
+ net_g_2.infer(
128
+ x_tst,
129
+ x_tst_lengths,
130
+ speakers,
131
+ tones,
132
+ lang_ids,
133
+ bert,
134
+ ja_bert,
135
+ sdp_ratio=sdp_ratio,
136
+ noise_scale=noise_scale,
137
+ noise_scale_w=noise_scale_w,
138
+ length_scale=length_scale,
139
+ )[0][0, 0]
140
+ .data.cpu()
141
+ .float()
142
+ .numpy()
143
+ )
144
+ del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
145
+ torch.cuda.empty_cache()
146
+ return audio
147
+
148
+ __LOG__ = "./generation_logs.txt"
149
+ def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language,from_model=0):
150
+ # 清空 ./infer_save 文件夹
151
+ if os.path.exists('./infer_save'):
152
+ shutil.rmtree('./infer_save')
153
+ os.makedirs('./infer_save')
154
+
155
+ slices = text.split("\n")
156
+ slices = [slice for slice in slices if slice.strip() != ""]
157
+ audio_list = []
158
+ with torch.no_grad():
159
+ with open(__LOG__,"a",encoding="UTF-8") as f:
160
+ for slice in slices:
161
+ assert len(slice) < 150 # 限制输入的文本长度
162
+ if from_model == 0:
163
+ audio = infer(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language=language)
164
+ else:
165
+ audio = infer_2(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language=language)
166
+ audio_list.append(audio)
167
+
168
+ # 创建唯一的文件名
169
+ timestamp = str(int(time.time() * 1000))
170
+ audio_file_path = f'./infer_save/audio_{timestamp}.wav'
171
+
172
+ # 保存音频数据到.wav文件
173
+ wavfile.write(audio_file_path, hps.data.sampling_rate, audio)
174
+
175
+ silence = np.zeros(int(hps.data.sampling_rate/2), dtype=np.int16) # 生成半秒的静音
176
+ audio_list.append(silence) # 将静音添加到列表中
177
+
178
+ f.write(f"{slice} | {speaker}\n")
179
+ print(f"{slice} | {speaker}")
180
+
181
+ audio_concat = np.concatenate(audio_list)
182
+ return "Success", (hps.data.sampling_rate, audio_concat)
183
+ def tts_fn_2(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language,from_model=1):
184
+ return tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language,from_model)
185
+
186
+ if __name__ == "__main__":
187
+ parser = argparse.ArgumentParser()
188
+ parser.add_argument(
189
+ "-m", "--model", default="./logs/natuki/G_72000.pth", help="path of your model"
190
+ )
191
+ parser.add_argument(
192
+ "-c",
193
+ "--config",
194
+ default="./configs/config.json",
195
+ help="path of your config file",
196
+ )
197
+ parser.add_argument(
198
+ "--share", default=False, help="make link public", action="store_true"
199
+ )
200
+ parser.add_argument(
201
+ "-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
202
+ )
203
+
204
+ args = parser.parse_args()
205
+ if args.debug:
206
+ logger.info("Enable DEBUG-LEVEL log")
207
+ logging.basicConfig(level=logging.DEBUG)
208
+ hps = utils.get_hparams_from_file("./logs/digital/config.json")
209
+ hps_2 = utils.get_hparams_from_file("./logs/fukukitaru/config.json")
210
+
211
+ device = (
212
+ "cuda:0"
213
+ if torch.cuda.is_available()
214
+ else (
215
+ "mps"
216
+ if sys.platform == "darwin" and torch.backends.mps.is_available()
217
+ else "cpu"
218
+ )
219
+ )
220
+ net_g = SynthesizerTrn(
221
+ len(symbols),
222
+ hps.data.filter_length // 2 + 1,
223
+ hps.train.segment_size // hps.data.hop_length,
224
+ n_speakers=hps.data.n_speakers,
225
+ **hps.model,
226
+ ).to(device)
227
+ _ = net_g.eval()
228
+
229
+ net_g_2 = SynthesizerTrn(
230
+ len(symbols),
231
+ hps.data.filter_length // 2 + 1,
232
+ hps.train.segment_size // hps.data.hop_length,
233
+ n_speakers=hps.data.n_speakers,
234
+ **hps.model,
235
+ ).to(device)
236
+
237
+ _ = utils.load_checkpoint("./logs/digital/G_10500.pth", net_g, None, skip_optimizer=True)
238
+ _ = utils.load_checkpoint("./logs/fukukitaru/G_10000.pth", net_g_2, None, skip_optimizer=True)
239
+
240
+ speaker_ids = hps.data.spk2id
241
+ speakers = list(speaker_ids.keys())
242
+ speaker_ids_2 = hps_2.data.spk2id
243
+ speakers_2 = list(speaker_ids_2.keys())
244
+
245
+
246
+ languages = ["ZH", "JP"]
247
+ with gr.Blocks() as app:
248
+ with gr.Tab(label="umamusume"):
249
+ with gr.Row():
250
+ with gr.Column():
251
+ text = gr.TextArea(
252
+ label="Text",
253
+ placeholder="Input Text Here",
254
+ value="はりきっていこう!",
255
+ )
256
+ speaker = gr.Dropdown(
257
+ choices=speakers, value=speakers[0], label="Speaker"
258
+ )
259
+ sdp_ratio = gr.Slider(
260
+ minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
261
+ )
262
+ noise_scale = gr.Slider(
263
+ minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
264
+ )
265
+ noise_scale_w = gr.Slider(
266
+ minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
267
+ )
268
+ length_scale = gr.Slider(
269
+ minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
270
+ )
271
+ language = gr.Dropdown(
272
+ choices=languages, value=languages[1], label="Language"
273
+ )
274
+ btn = gr.Button("Generate!", variant="primary")
275
+ with gr.Column():
276
+ text_output = gr.Textbox(label="Message")
277
+ audio_output = gr.Audio(label="Output Audio")
278
+ gr.Markdown("# 赛马娘 Bert-VITS2 语音合成\n"
279
+ "Project page:[GitHub](https://github.com/fishaudio/Bert-VITS2)\n"
280
+ "- 本项目在日语方面有所欠缺,特别是音调的设计上,需要帮助。\n"
281
+ "- このプロジェクトは、日本語の方面で不足しています。特に、音調の設計に関して助けが欲しいです。")
282
+
283
+ btn.click(
284
+ tts_fn,
285
+ inputs=[
286
+ text,
287
+ speaker,
288
+ sdp_ratio,
289
+ noise_scale,
290
+ noise_scale_w,
291
+ length_scale,
292
+ language,
293
+ ],
294
+ outputs=[text_output, audio_output],
295
+ )
296
+ with gr.Tab(label="natuki"):
297
+ with gr.Row():
298
+ with gr.Column():
299
+ text2 = gr.TextArea(
300
+ label="Text",
301
+ placeholder="Input Text Here",
302
+ value="はりきっていこう!",
303
+ )
304
+ speaker2 = gr.Dropdown(
305
+ choices=speakers_2, value=speakers_2[0], label="Speaker"
306
+ )
307
+ sdp_ratio2 = gr.Slider(
308
+ minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
309
+ )
310
+ noise_scale2 = gr.Slider(
311
+ minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
312
+ )
313
+ noise_scale_w2 = gr.Slider(
314
+ minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
315
+ )
316
+ length_scale2 = gr.Slider(
317
+ minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
318
+ )
319
+ language2 = gr.Dropdown(
320
+ choices=languages, value=languages[1], label="Language"
321
+ )
322
+ btn2 = gr.Button("Generate!", variant="primary")
323
+ with gr.Column():
324
+ text_output2 = gr.Textbox(label="Message")
325
+ audio_output2 = gr.Audio(label="Output Audio")
326
+ gr.Markdown("# 赛马娘 Bert-VITS2 语音合成\n"
327
+ "Project page:[GitHub](https://github.com/fishaudio/Bert-VITS2)\n"
328
+ "- 本项目在日语方面有所欠缺,特别是音调的设计上,需要帮助。\n"
329
+ "- このプロジェクトは、日本語の方面で不足しています。特に、音調の設計に関して助けが欲しいです。")
330
+
331
+ btn2.click(
332
+ tts_fn_2,
333
+ inputs=[
334
+ text2,
335
+ speaker2,
336
+ sdp_ratio2,
337
+ noise_scale2,
338
+ noise_scale_w2,
339
+ length_scale2,
340
+ language2,
341
+ ],
342
+ outputs=[text_output2, audio_output2],
343
+ )
344
+ app.launch(server_name="0.0.0.0")
attentions.py ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ import commons
7
+ import logging
8
+
9
+ logger = logging.getLogger(__name__)
10
+
11
+
12
+ class LayerNorm(nn.Module):
13
+ def __init__(self, channels, eps=1e-5):
14
+ super().__init__()
15
+ self.channels = channels
16
+ self.eps = eps
17
+
18
+ self.gamma = nn.Parameter(torch.ones(channels))
19
+ self.beta = nn.Parameter(torch.zeros(channels))
20
+
21
+ def forward(self, x):
22
+ x = x.transpose(1, -1)
23
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
24
+ return x.transpose(1, -1)
25
+
26
+
27
+ @torch.jit.script
28
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
29
+ n_channels_int = n_channels[0]
30
+ in_act = input_a + input_b
31
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
32
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
33
+ acts = t_act * s_act
34
+ return acts
35
+
36
+
37
+ class Encoder(nn.Module):
38
+ def __init__(
39
+ self,
40
+ hidden_channels,
41
+ filter_channels,
42
+ n_heads,
43
+ n_layers,
44
+ kernel_size=1,
45
+ p_dropout=0.0,
46
+ window_size=4,
47
+ isflow=True,
48
+ **kwargs
49
+ ):
50
+ super().__init__()
51
+ self.hidden_channels = hidden_channels
52
+ self.filter_channels = filter_channels
53
+ self.n_heads = n_heads
54
+ self.n_layers = n_layers
55
+ self.kernel_size = kernel_size
56
+ self.p_dropout = p_dropout
57
+ self.window_size = window_size
58
+ # if isflow:
59
+ # cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
60
+ # self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
61
+ # self.cond_layer = weight_norm(cond_layer, name='weight')
62
+ # self.gin_channels = 256
63
+ self.cond_layer_idx = self.n_layers
64
+ if "gin_channels" in kwargs:
65
+ self.gin_channels = kwargs["gin_channels"]
66
+ if self.gin_channels != 0:
67
+ self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
68
+ # vits2 says 3rd block, so idx is 2 by default
69
+ self.cond_layer_idx = (
70
+ kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
71
+ )
72
+ logging.debug(self.gin_channels, self.cond_layer_idx)
73
+ assert (
74
+ self.cond_layer_idx < self.n_layers
75
+ ), "cond_layer_idx should be less than n_layers"
76
+ self.drop = nn.Dropout(p_dropout)
77
+ self.attn_layers = nn.ModuleList()
78
+ self.norm_layers_1 = nn.ModuleList()
79
+ self.ffn_layers = nn.ModuleList()
80
+ self.norm_layers_2 = nn.ModuleList()
81
+ for i in range(self.n_layers):
82
+ self.attn_layers.append(
83
+ MultiHeadAttention(
84
+ hidden_channels,
85
+ hidden_channels,
86
+ n_heads,
87
+ p_dropout=p_dropout,
88
+ window_size=window_size,
89
+ )
90
+ )
91
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
92
+ self.ffn_layers.append(
93
+ FFN(
94
+ hidden_channels,
95
+ hidden_channels,
96
+ filter_channels,
97
+ kernel_size,
98
+ p_dropout=p_dropout,
99
+ )
100
+ )
101
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
102
+
103
+ def forward(self, x, x_mask, g=None):
104
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
105
+ x = x * x_mask
106
+ for i in range(self.n_layers):
107
+ if i == self.cond_layer_idx and g is not None:
108
+ g = self.spk_emb_linear(g.transpose(1, 2))
109
+ g = g.transpose(1, 2)
110
+ x = x + g
111
+ x = x * x_mask
112
+ y = self.attn_layers[i](x, x, attn_mask)
113
+ y = self.drop(y)
114
+ x = self.norm_layers_1[i](x + y)
115
+
116
+ y = self.ffn_layers[i](x, x_mask)
117
+ y = self.drop(y)
118
+ x = self.norm_layers_2[i](x + y)
119
+ x = x * x_mask
120
+ return x
121
+
122
+
123
+ class Decoder(nn.Module):
124
+ def __init__(
125
+ self,
126
+ hidden_channels,
127
+ filter_channels,
128
+ n_heads,
129
+ n_layers,
130
+ kernel_size=1,
131
+ p_dropout=0.0,
132
+ proximal_bias=False,
133
+ proximal_init=True,
134
+ **kwargs
135
+ ):
136
+ super().__init__()
137
+ self.hidden_channels = hidden_channels
138
+ self.filter_channels = filter_channels
139
+ self.n_heads = n_heads
140
+ self.n_layers = n_layers
141
+ self.kernel_size = kernel_size
142
+ self.p_dropout = p_dropout
143
+ self.proximal_bias = proximal_bias
144
+ self.proximal_init = proximal_init
145
+
146
+ self.drop = nn.Dropout(p_dropout)
147
+ self.self_attn_layers = nn.ModuleList()
148
+ self.norm_layers_0 = nn.ModuleList()
149
+ self.encdec_attn_layers = nn.ModuleList()
150
+ self.norm_layers_1 = nn.ModuleList()
151
+ self.ffn_layers = nn.ModuleList()
152
+ self.norm_layers_2 = nn.ModuleList()
153
+ for i in range(self.n_layers):
154
+ self.self_attn_layers.append(
155
+ MultiHeadAttention(
156
+ hidden_channels,
157
+ hidden_channels,
158
+ n_heads,
159
+ p_dropout=p_dropout,
160
+ proximal_bias=proximal_bias,
161
+ proximal_init=proximal_init,
162
+ )
163
+ )
164
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
165
+ self.encdec_attn_layers.append(
166
+ MultiHeadAttention(
167
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
168
+ )
169
+ )
170
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
171
+ self.ffn_layers.append(
172
+ FFN(
173
+ hidden_channels,
174
+ hidden_channels,
175
+ filter_channels,
176
+ kernel_size,
177
+ p_dropout=p_dropout,
178
+ causal=True,
179
+ )
180
+ )
181
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
182
+
183
+ def forward(self, x, x_mask, h, h_mask):
184
+ """
185
+ x: decoder input
186
+ h: encoder output
187
+ """
188
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
189
+ device=x.device, dtype=x.dtype
190
+ )
191
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
192
+ x = x * x_mask
193
+ for i in range(self.n_layers):
194
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
195
+ y = self.drop(y)
196
+ x = self.norm_layers_0[i](x + y)
197
+
198
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
199
+ y = self.drop(y)
200
+ x = self.norm_layers_1[i](x + y)
201
+
202
+ y = self.ffn_layers[i](x, x_mask)
203
+ y = self.drop(y)
204
+ x = self.norm_layers_2[i](x + y)
205
+ x = x * x_mask
206
+ return x
207
+
208
+
209
+ class MultiHeadAttention(nn.Module):
210
+ def __init__(
211
+ self,
212
+ channels,
213
+ out_channels,
214
+ n_heads,
215
+ p_dropout=0.0,
216
+ window_size=None,
217
+ heads_share=True,
218
+ block_length=None,
219
+ proximal_bias=False,
220
+ proximal_init=False,
221
+ ):
222
+ super().__init__()
223
+ assert channels % n_heads == 0
224
+
225
+ self.channels = channels
226
+ self.out_channels = out_channels
227
+ self.n_heads = n_heads
228
+ self.p_dropout = p_dropout
229
+ self.window_size = window_size
230
+ self.heads_share = heads_share
231
+ self.block_length = block_length
232
+ self.proximal_bias = proximal_bias
233
+ self.proximal_init = proximal_init
234
+ self.attn = None
235
+
236
+ self.k_channels = channels // n_heads
237
+ self.conv_q = nn.Conv1d(channels, channels, 1)
238
+ self.conv_k = nn.Conv1d(channels, channels, 1)
239
+ self.conv_v = nn.Conv1d(channels, channels, 1)
240
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
241
+ self.drop = nn.Dropout(p_dropout)
242
+
243
+ if window_size is not None:
244
+ n_heads_rel = 1 if heads_share else n_heads
245
+ rel_stddev = self.k_channels**-0.5
246
+ self.emb_rel_k = nn.Parameter(
247
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
248
+ * rel_stddev
249
+ )
250
+ self.emb_rel_v = nn.Parameter(
251
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
252
+ * rel_stddev
253
+ )
254
+
255
+ nn.init.xavier_uniform_(self.conv_q.weight)
256
+ nn.init.xavier_uniform_(self.conv_k.weight)
257
+ nn.init.xavier_uniform_(self.conv_v.weight)
258
+ if proximal_init:
259
+ with torch.no_grad():
260
+ self.conv_k.weight.copy_(self.conv_q.weight)
261
+ self.conv_k.bias.copy_(self.conv_q.bias)
262
+
263
+ def forward(self, x, c, attn_mask=None):
264
+ q = self.conv_q(x)
265
+ k = self.conv_k(c)
266
+ v = self.conv_v(c)
267
+
268
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
269
+
270
+ x = self.conv_o(x)
271
+ return x
272
+
273
+ def attention(self, query, key, value, mask=None):
274
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
275
+ b, d, t_s, t_t = (*key.size(), query.size(2))
276
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
277
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
278
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
279
+
280
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
281
+ if self.window_size is not None:
282
+ assert (
283
+ t_s == t_t
284
+ ), "Relative attention is only available for self-attention."
285
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
286
+ rel_logits = self._matmul_with_relative_keys(
287
+ query / math.sqrt(self.k_channels), key_relative_embeddings
288
+ )
289
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
290
+ scores = scores + scores_local
291
+ if self.proximal_bias:
292
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
293
+ scores = scores + self._attention_bias_proximal(t_s).to(
294
+ device=scores.device, dtype=scores.dtype
295
+ )
296
+ if mask is not None:
297
+ scores = scores.masked_fill(mask == 0, -1e4)
298
+ if self.block_length is not None:
299
+ assert (
300
+ t_s == t_t
301
+ ), "Local attention is only available for self-attention."
302
+ block_mask = (
303
+ torch.ones_like(scores)
304
+ .triu(-self.block_length)
305
+ .tril(self.block_length)
306
+ )
307
+ scores = scores.masked_fill(block_mask == 0, -1e4)
308
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
309
+ p_attn = self.drop(p_attn)
310
+ output = torch.matmul(p_attn, value)
311
+ if self.window_size is not None:
312
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
313
+ value_relative_embeddings = self._get_relative_embeddings(
314
+ self.emb_rel_v, t_s
315
+ )
316
+ output = output + self._matmul_with_relative_values(
317
+ relative_weights, value_relative_embeddings
318
+ )
319
+ output = (
320
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
321
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
322
+ return output, p_attn
323
+
324
+ def _matmul_with_relative_values(self, x, y):
325
+ """
326
+ x: [b, h, l, m]
327
+ y: [h or 1, m, d]
328
+ ret: [b, h, l, d]
329
+ """
330
+ ret = torch.matmul(x, y.unsqueeze(0))
331
+ return ret
332
+
333
+ def _matmul_with_relative_keys(self, x, y):
334
+ """
335
+ x: [b, h, l, d]
336
+ y: [h or 1, m, d]
337
+ ret: [b, h, l, m]
338
+ """
339
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
340
+ return ret
341
+
342
+ def _get_relative_embeddings(self, relative_embeddings, length):
343
+ 2 * self.window_size + 1
344
+ # Pad first before slice to avoid using cond ops.
345
+ pad_length = max(length - (self.window_size + 1), 0)
346
+ slice_start_position = max((self.window_size + 1) - length, 0)
347
+ slice_end_position = slice_start_position + 2 * length - 1
348
+ if pad_length > 0:
349
+ padded_relative_embeddings = F.pad(
350
+ relative_embeddings,
351
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
352
+ )
353
+ else:
354
+ padded_relative_embeddings = relative_embeddings
355
+ used_relative_embeddings = padded_relative_embeddings[
356
+ :, slice_start_position:slice_end_position
357
+ ]
358
+ return used_relative_embeddings
359
+
360
+ def _relative_position_to_absolute_position(self, x):
361
+ """
362
+ x: [b, h, l, 2*l-1]
363
+ ret: [b, h, l, l]
364
+ """
365
+ batch, heads, length, _ = x.size()
366
+ # Concat columns of pad to shift from relative to absolute indexing.
367
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
368
+
369
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
370
+ x_flat = x.view([batch, heads, length * 2 * length])
371
+ x_flat = F.pad(
372
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
373
+ )
374
+
375
+ # Reshape and slice out the padded elements.
376
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
377
+ :, :, :length, length - 1 :
378
+ ]
379
+ return x_final
380
+
381
+ def _absolute_position_to_relative_position(self, x):
382
+ """
383
+ x: [b, h, l, l]
384
+ ret: [b, h, l, 2*l-1]
385
+ """
386
+ batch, heads, length, _ = x.size()
387
+ # pad along column
388
+ x = F.pad(
389
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
390
+ )
391
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
392
+ # add 0's in the beginning that will skew the elements after reshape
393
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
394
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
395
+ return x_final
396
+
397
+ def _attention_bias_proximal(self, length):
398
+ """Bias for self-attention to encourage attention to close positions.
399
+ Args:
400
+ length: an integer scalar.
401
+ Returns:
402
+ a Tensor with shape [1, 1, length, length]
403
+ """
404
+ r = torch.arange(length, dtype=torch.float32)
405
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
406
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
407
+
408
+
409
+ class FFN(nn.Module):
410
+ def __init__(
411
+ self,
412
+ in_channels,
413
+ out_channels,
414
+ filter_channels,
415
+ kernel_size,
416
+ p_dropout=0.0,
417
+ activation=None,
418
+ causal=False,
419
+ ):
420
+ super().__init__()
421
+ self.in_channels = in_channels
422
+ self.out_channels = out_channels
423
+ self.filter_channels = filter_channels
424
+ self.kernel_size = kernel_size
425
+ self.p_dropout = p_dropout
426
+ self.activation = activation
427
+ self.causal = causal
428
+
429
+ if causal:
430
+ self.padding = self._causal_padding
431
+ else:
432
+ self.padding = self._same_padding
433
+
434
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
435
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
436
+ self.drop = nn.Dropout(p_dropout)
437
+
438
+ def forward(self, x, x_mask):
439
+ x = self.conv_1(self.padding(x * x_mask))
440
+ if self.activation == "gelu":
441
+ x = x * torch.sigmoid(1.702 * x)
442
+ else:
443
+ x = torch.relu(x)
444
+ x = self.drop(x)
445
+ x = self.conv_2(self.padding(x * x_mask))
446
+ return x * x_mask
447
+
448
+ def _causal_padding(self, x):
449
+ if self.kernel_size == 1:
450
+ return x
451
+ pad_l = self.kernel_size - 1
452
+ pad_r = 0
453
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
454
+ x = F.pad(x, commons.convert_pad_shape(padding))
455
+ return x
456
+
457
+ def _same_padding(self, x):
458
+ if self.kernel_size == 1:
459
+ return x
460
+ pad_l = (self.kernel_size - 1) // 2
461
+ pad_r = self.kernel_size // 2
462
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
463
+ x = F.pad(x, commons.convert_pad_shape(padding))
464
+ return x
bert/bert-base-japanese-v3/README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cc100
5
+ - wikipedia
6
+ language:
7
+ - ja
8
+ widget:
9
+ - text: 東北大学で[MASK]の研究をしています。
10
+ ---
11
+
12
+ # BERT base Japanese (unidic-lite with whole word masking, CC-100 and jawiki-20230102)
13
+
14
+ This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language.
15
+
16
+ This version of the model processes input texts with word-level tokenization based on the Unidic 2.1.2 dictionary (available in [unidic-lite](https://pypi.org/project/unidic-lite/) package), followed by the WordPiece subword tokenization.
17
+ Additionally, the model is trained with the whole word masking enabled for the masked language modeling (MLM) objective.
18
+
19
+ The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/).
20
+
21
+ ## Model architecture
22
+
23
+ The model architecture is the same as the original BERT base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads.
24
+
25
+ ## Training Data
26
+
27
+ The model is trained on the Japanese portion of [CC-100 dataset](https://data.statmt.org/cc-100/) and the Japanese version of Wikipedia.
28
+ For Wikipedia, we generated a text corpus from the [Wikipedia Cirrussearch dump file](https://dumps.wikimedia.org/other/cirrussearch/) as of January 2, 2023.
29
+ The corpus files generated from CC-100 and Wikipedia are 74.3GB and 4.9GB in size and consist of approximately 392M and 34M sentences, respectively.
30
+
31
+ For the purpose of splitting texts into sentences, we used [fugashi](https://github.com/polm/fugashi) with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd) dictionary (v0.0.7).
32
+
33
+ ## Tokenization
34
+
35
+ The texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm.
36
+ The vocabulary size is 32768.
37
+
38
+ We used [fugashi](https://github.com/polm/fugashi) and [unidic-lite](https://github.com/polm/unidic-lite) packages for the tokenization.
39
+
40
+ ## Training
41
+
42
+ We trained the model first on the CC-100 corpus for 1M steps and then on the Wikipedia corpus for another 1M steps.
43
+ For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once.
44
+
45
+ For training of each model, we used a v3-8 instance of Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/).
46
+
47
+ ## Licenses
48
+
49
+ The pretrained models are distributed under the Apache License 2.0.
50
+
51
+ ## Acknowledgments
52
+
53
+ This model is trained with Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/) program.
bert/bert-base-japanese-v3/config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForPreTraining"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 12,
16
+ "pad_token_id": 0,
17
+ "type_vocab_size": 2,
18
+ "vocab_size": 32768
19
+ }
bert/bert-base-japanese-v3/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e172862e0674054d65e0ba40d67df2a4687982f589db44aa27091c386e5450a4
3
+ size 447406217
bert/bert-base-japanese-v3/tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "tokenizer_class": "BertJapaneseTokenizer",
3
+ "model_max_length": 512,
4
+ "do_lower_case": false,
5
+ "word_tokenizer_type": "mecab",
6
+ "subword_tokenizer_type": "wordpiece",
7
+ "mecab_kwargs": {
8
+ "mecab_dic": "unidic_lite"
9
+ }
10
+ }
bert/bert-base-japanese-v3/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
bert/chinese-roberta-wwm-ext-large/.gitattributes ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
bert/chinese-roberta-wwm-ext-large/.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ *.bin
bert/chinese-roberta-wwm-ext-large/README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ tags:
5
+ - bert
6
+ license: "apache-2.0"
7
+ ---
8
+
9
+ # Please use 'Bert' related functions to load this model!
10
+
11
+ ## Chinese BERT with Whole Word Masking
12
+ For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.
13
+
14
+ **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**
15
+ Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
16
+
17
+ This repository is developed based on:https://github.com/google-research/bert
18
+
19
+ You may also interested in,
20
+ - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
21
+ - Chinese MacBERT: https://github.com/ymcui/MacBERT
22
+ - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
23
+ - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
24
+ - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
25
+
26
+ More resources by HFL: https://github.com/ymcui/HFL-Anthology
27
+
28
+ ## Citation
29
+ If you find the technical report or resource is useful, please cite the following technical report in your paper.
30
+ - Primary: https://arxiv.org/abs/2004.13922
31
+ ```
32
+ @inproceedings{cui-etal-2020-revisiting,
33
+ title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
34
+ author = "Cui, Yiming and
35
+ Che, Wanxiang and
36
+ Liu, Ting and
37
+ Qin, Bing and
38
+ Wang, Shijin and
39
+ Hu, Guoping",
40
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
41
+ month = nov,
42
+ year = "2020",
43
+ address = "Online",
44
+ publisher = "Association for Computational Linguistics",
45
+ url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
46
+ pages = "657--668",
47
+ }
48
+ ```
49
+ - Secondary: https://arxiv.org/abs/1906.08101
50
+ ```
51
+ @article{chinese-bert-wwm,
52
+ title={Pre-Training with Whole Word Masking for Chinese BERT},
53
+ author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
54
+ journal={arXiv preprint arXiv:1906.08101},
55
+ year={2019}
56
+ }
57
+ ```
bert/chinese-roberta-wwm-ext-large/added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
bert/chinese-roberta-wwm-ext-large/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "directionality": "bidi",
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "output_past": true,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "type_vocab_size": 2,
27
+ "vocab_size": 21128
28
+ }
bert/chinese-roberta-wwm-ext-large/special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
bert/chinese-roberta-wwm-ext-large/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
bert/chinese-roberta-wwm-ext-large/tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"init_inputs": []}
bert/chinese-roberta-wwm-ext-large/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
bert_gen.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from multiprocessing import Pool
3
+ import commons
4
+ import utils
5
+ from tqdm import tqdm
6
+ from text import cleaned_text_to_sequence, get_bert
7
+ import argparse
8
+ import torch.multiprocessing as mp
9
+
10
+ import os
11
+ os.environ['http_proxy'] = 'http://localhost:11796'
12
+ os.environ['https_proxy'] = 'http://localhost:11796'
13
+ def process_line(line):
14
+ rank = mp.current_process()._identity
15
+ rank = rank[0] if len(rank) > 0 else 0
16
+ if torch.cuda.is_available():
17
+ gpu_id = rank % torch.cuda.device_count()
18
+ device = torch.device(f"cuda:{gpu_id}")
19
+ wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|")
20
+ phone = phones.split(" ")
21
+ tone = [int(i) for i in tone.split(" ")]
22
+ word2ph = [int(i) for i in word2ph.split(" ")]
23
+ word2ph = [i for i in word2ph]
24
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
25
+
26
+ phone = commons.intersperse(phone, 0)
27
+ tone = commons.intersperse(tone, 0)
28
+ language = commons.intersperse(language, 0)
29
+ for i in range(len(word2ph)):
30
+ word2ph[i] = word2ph[i] * 2
31
+ word2ph[0] += 1
32
+
33
+ bert_path = wav_path.replace(".wav", ".bert.pt")
34
+
35
+ try:
36
+ bert = torch.load(bert_path)
37
+ assert bert.shape[-1] == len(phone)
38
+ except Exception:
39
+ bert = get_bert(text, word2ph, language_str, device)
40
+ assert bert.shape[-1] == len(phone)
41
+ torch.save(bert, bert_path)
42
+
43
+
44
+ if __name__ == "__main__":
45
+ parser = argparse.ArgumentParser()
46
+ parser.add_argument("-c", "--config", type=str, default="configs/config.json")
47
+ parser.add_argument("--num_processes", type=int, default=2)
48
+ args = parser.parse_args()
49
+ config_path = args.config
50
+ hps = utils.get_hparams_from_file(config_path)
51
+ lines = []
52
+ with open(hps.data.training_files, encoding="utf-8") as f:
53
+ lines.extend(f.readlines())
54
+
55
+ with open(hps.data.validation_files, encoding="utf-8") as f:
56
+ lines.extend(f.readlines())
57
+
58
+ num_processes = args.num_processes
59
+ with Pool(processes=num_processes) as pool:
60
+ for _ in tqdm(pool.imap_unordered(process_line, lines), total=len(lines)):
61
+ pass
commons.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch.nn import functional as F
4
+
5
+
6
+ def init_weights(m, mean=0.0, std=0.01):
7
+ classname = m.__class__.__name__
8
+ if classname.find("Conv") != -1:
9
+ m.weight.data.normal_(mean, std)
10
+
11
+
12
+ def get_padding(kernel_size, dilation=1):
13
+ return int((kernel_size * dilation - dilation) / 2)
14
+
15
+
16
+ def convert_pad_shape(pad_shape):
17
+ layer = pad_shape[::-1]
18
+ pad_shape = [item for sublist in layer for item in sublist]
19
+ return pad_shape
20
+
21
+
22
+ def intersperse(lst, item):
23
+ result = [item] * (len(lst) * 2 + 1)
24
+ result[1::2] = lst
25
+ return result
26
+
27
+
28
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
29
+ """KL(P||Q)"""
30
+ kl = (logs_q - logs_p) - 0.5
31
+ kl += (
32
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
33
+ )
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
+
56
+
57
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
+ b, d, t = x.size()
59
+ if x_lengths is None:
60
+ x_lengths = t
61
+ ids_str_max = x_lengths - segment_size + 1
62
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
+ ret = slice_segments(x, ids_str, segment_size)
64
+ return ret, ids_str
65
+
66
+
67
+ def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
68
+ position = torch.arange(length, dtype=torch.float)
69
+ num_timescales = channels // 2
70
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
71
+ num_timescales - 1
72
+ )
73
+ inv_timescales = min_timescale * torch.exp(
74
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
75
+ )
76
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
79
+ signal = signal.view(1, channels, length)
80
+ return signal
81
+
82
+
83
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
+ b, channels, length = x.size()
85
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
+ return x + signal.to(dtype=x.dtype, device=x.device)
87
+
88
+
89
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
+
94
+
95
+ def subsequent_mask(length):
96
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
+ return mask
98
+
99
+
100
+ @torch.jit.script
101
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
+ n_channels_int = n_channels[0]
103
+ in_act = input_a + input_b
104
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
+ acts = t_act * s_act
107
+ return acts
108
+
109
+
110
+ def convert_pad_shape(pad_shape):
111
+ layer = pad_shape[::-1]
112
+ pad_shape = [item for sublist in layer for item in sublist]
113
+ return pad_shape
114
+
115
+
116
+ def shift_1d(x):
117
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
+ return x
119
+
120
+
121
+ def sequence_mask(length, max_length=None):
122
+ if max_length is None:
123
+ max_length = length.max()
124
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
+ return x.unsqueeze(0) < length.unsqueeze(1)
126
+
127
+
128
+ def generate_path(duration, mask):
129
+ """
130
+ duration: [b, 1, t_x]
131
+ mask: [b, 1, t_y, t_x]
132
+ """
133
+
134
+ b, _, t_y, t_x = mask.shape
135
+ cum_duration = torch.cumsum(duration, -1)
136
+
137
+ cum_duration_flat = cum_duration.view(b * t_x)
138
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
139
+ path = path.view(b, t_x, t_y)
140
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
141
+ path = path.unsqueeze(1).transpose(2, 3) * mask
142
+ return path
143
+
144
+
145
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
146
+ if isinstance(parameters, torch.Tensor):
147
+ parameters = [parameters]
148
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
149
+ norm_type = float(norm_type)
150
+ if clip_value is not None:
151
+ clip_value = float(clip_value)
152
+
153
+ total_norm = 0
154
+ for p in parameters:
155
+ if clip_value is not None:
156
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
157
+ param_norm = p.grad.data.norm(norm_type)
158
+ total_norm += param_norm.item() ** norm_type
159
+ total_norm = total_norm ** (1.0 / norm_type)
160
+ return total_norm
configs/config.json ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 20,
4
+ "eval_interval": 500,
5
+ "seed": 52,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 4,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "skip_optimizer": true
22
+ },
23
+ "data": {
24
+ "training_files": "filelists/train.list",
25
+ "validation_files": "filelists/val.list",
26
+ "max_wav_value": 32768.0,
27
+ "sampling_rate": 44100,
28
+ "filter_length": 2048,
29
+ "hop_length": 512,
30
+ "win_length": 2048,
31
+ "n_mel_channels": 128,
32
+ "mel_fmin": 0.0,
33
+ "mel_fmax": null,
34
+ "add_blank": true,
35
+ "n_speakers": 256,
36
+ "cleaned_text": true,
37
+ "spk2id": {
38
+ "特别周": 0,
39
+ "无声铃鹿": 1,
40
+ "丸善斯基": 2,
41
+ "富士奇迹": 3,
42
+ "东海帝皇": 4,
43
+ "小栗帽": 5,
44
+ "黄金船": 6,
45
+ "伏特加": 7,
46
+ "大和赤骥": 8,
47
+ "菱亚马逊": 9,
48
+ "草上飞": 10,
49
+ "大树快车": 11,
50
+ "目白麦昆": 12,
51
+ "神鹰": 13,
52
+ "鲁道夫象征": 14,
53
+ "好歌剧": 15,
54
+ "成田白仁": 16,
55
+ "爱丽数码": 17,
56
+ "美妙姿势": 18,
57
+ "摩耶重炮": 19,
58
+ "玉藻十字": 20,
59
+ "琵琶晨光": 21,
60
+ "目白赖恩": 22,
61
+ "美浦波旁": 23,
62
+ "雪中美人": 24,
63
+ "米浴": 25,
64
+ "爱丽速子": 26,
65
+ "爱慕织姬": 27,
66
+ "曼城茶座": 28,
67
+ "气槽": 29,
68
+ "星云天空": 30,
69
+ "菱曙": 31,
70
+ "艾尼斯风神": 32,
71
+ "稻荷一": 33,
72
+ "空中神宫": 34,
73
+ "川上公主": 35,
74
+ "黄金城": 36,
75
+ "真机伶": 37,
76
+ "荣进闪耀": 38,
77
+ "采珠": 39,
78
+ "新光风": 40,
79
+ "超级小海湾": 41,
80
+ "荒漠英雄": 42,
81
+ "东瀛佐敦": 43,
82
+ "中山庆典": 44,
83
+ "成田大进": 45,
84
+ "西野花": 46,
85
+ "醒目飞鹰": 47,
86
+ "春乌拉拉": 48,
87
+ "青竹回忆": 49,
88
+ "待兼福来": 50,
89
+ "Mr CB": 51,
90
+ "美丽周日": 52,
91
+ "名将怒涛": 53,
92
+ "帝王光辉": 54,
93
+ "待兼诗歌剧": 55,
94
+ "生野狄杜斯": 56,
95
+ "优秀素质": 57,
96
+ "双涡轮": 58,
97
+ "目白多伯": 59,
98
+ "目白善信": 60,
99
+ "大拓太阳神": 61,
100
+ "北部玄驹": 62,
101
+ "目白阿尔丹": 63,
102
+ "八重无敌": 64,
103
+ "里见光钻": 65,
104
+ "天狼星象征": 66,
105
+ "樱花桂冠": 67,
106
+ "成田路": 68,
107
+ "也文摄辉": 69,
108
+ "吉兆": 70,
109
+ "鹤丸刚志": 71,
110
+ "谷野美酒": 72,
111
+ "第一红宝石": 73,
112
+ "目白高峰": 74,
113
+ "真弓快车": 75,
114
+ "里见皇冠": 76,
115
+ "高尚骏逸": 77,
116
+ "凯斯奇迹": 78,
117
+ "森林宝穴": 79,
118
+ "小林力奇": 80,
119
+ "奇瑞骏": 81,
120
+ "葛城王牌": 82,
121
+ "新宇宙": 83,
122
+ "菱钻奇宝": 84,
123
+ "望族": 85,
124
+ "骏川手纲": 86,
125
+ "秋川弥生": 87,
126
+ "乙名史悦子": 88,
127
+ "桐生院葵": 89,
128
+ "安心泽刺刺美": 90,
129
+ "达利阿拉伯": 91,
130
+ "高多芬柏布": 92,
131
+ "佐岳五月": 93,
132
+ "胜利奖券": 94,
133
+ "樱花进王": 95,
134
+ "东商变革": 96,
135
+ "微光飞驹": 97,
136
+ "樱花千代王": 98,
137
+ "跳舞城": 99,
138
+ "樫本理子": 100,
139
+ "明亮圣辉": 101,
140
+ "拜耶土耳其": 102
141
+ }
142
+ },
143
+ "model": {
144
+ "use_spk_conditioned_encoder": true,
145
+ "use_noise_scaled_mas": true,
146
+ "use_mel_posterior_encoder": false,
147
+ "use_duration_discriminator": true,
148
+ "inter_channels": 192,
149
+ "hidden_channels": 192,
150
+ "filter_channels": 768,
151
+ "n_heads": 2,
152
+ "n_layers": 6,
153
+ "kernel_size": 3,
154
+ "p_dropout": 0.1,
155
+ "resblock": "1",
156
+ "resblock_kernel_sizes": [
157
+ 3,
158
+ 7,
159
+ 11
160
+ ],
161
+ "resblock_dilation_sizes": [
162
+ [
163
+ 1,
164
+ 3,
165
+ 5
166
+ ],
167
+ [
168
+ 1,
169
+ 3,
170
+ 5
171
+ ],
172
+ [
173
+ 1,
174
+ 3,
175
+ 5
176
+ ]
177
+ ],
178
+ "upsample_rates": [
179
+ 8,
180
+ 8,
181
+ 2,
182
+ 2,
183
+ 2
184
+ ],
185
+ "upsample_initial_channel": 512,
186
+ "upsample_kernel_sizes": [
187
+ 16,
188
+ 16,
189
+ 8,
190
+ 2,
191
+ 2
192
+ ],
193
+ "n_layers_q": 3,
194
+ "use_spectral_norm": false,
195
+ "gin_channels": 256
196
+ }
197
+ }
data_utils.py ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ import torch
4
+ import torch.utils.data
5
+ from tqdm import tqdm
6
+ from loguru import logger
7
+ import commons
8
+ from mel_processing import spectrogram_torch, mel_spectrogram_torch
9
+ from utils import load_wav_to_torch, load_filepaths_and_text
10
+ from text import cleaned_text_to_sequence, get_bert
11
+
12
+ """Multi speaker version"""
13
+
14
+
15
+ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
16
+ """
17
+ 1) loads audio, speaker_id, text pairs
18
+ 2) normalizes text and converts them to sequences of integers
19
+ 3) computes spectrograms from audio files.
20
+ """
21
+
22
+ def __init__(self, audiopaths_sid_text, hparams):
23
+ self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
24
+ self.max_wav_value = hparams.max_wav_value
25
+ self.sampling_rate = hparams.sampling_rate
26
+ self.filter_length = hparams.filter_length
27
+ self.hop_length = hparams.hop_length
28
+ self.win_length = hparams.win_length
29
+ self.sampling_rate = hparams.sampling_rate
30
+ self.spk_map = hparams.spk2id
31
+ self.hparams = hparams
32
+
33
+ self.use_mel_spec_posterior = getattr(
34
+ hparams, "use_mel_posterior_encoder", False
35
+ )
36
+ if self.use_mel_spec_posterior:
37
+ self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
38
+
39
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
40
+
41
+ self.add_blank = hparams.add_blank
42
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
43
+ self.max_text_len = getattr(hparams, "max_text_len", 300)
44
+
45
+ random.seed(1234)
46
+ random.shuffle(self.audiopaths_sid_text)
47
+ self._filter()
48
+
49
+ def _filter(self):
50
+ """
51
+ Filter text & store spec lengths
52
+ """
53
+ # Store spectrogram lengths for Bucketing
54
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
55
+ # spec_length = wav_length // hop_length
56
+
57
+ audiopaths_sid_text_new = []
58
+ lengths = []
59
+ skipped = 0
60
+ logger.info("Init dataset...")
61
+ for _id, spk, language, text, phones, tone, word2ph in tqdm(
62
+ self.audiopaths_sid_text
63
+ ):
64
+ audiopath = f"{_id}"
65
+ if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len:
66
+ phones = phones.split(" ")
67
+ tone = [int(i) for i in tone.split(" ")]
68
+ word2ph = [int(i) for i in word2ph.split(" ")]
69
+ audiopaths_sid_text_new.append(
70
+ [audiopath, spk, language, text, phones, tone, word2ph]
71
+ )
72
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
73
+ else:
74
+ skipped += 1
75
+ logger.info(
76
+ "skipped: "
77
+ + str(skipped)
78
+ + ", total: "
79
+ + str(len(self.audiopaths_sid_text))
80
+ )
81
+ self.audiopaths_sid_text = audiopaths_sid_text_new
82
+ self.lengths = lengths
83
+
84
+ def get_audio_text_speaker_pair(self, audiopath_sid_text):
85
+ # separate filename, speaker_id and text
86
+ audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text
87
+
88
+ bert, ja_bert, phones, tone, language = self.get_text(
89
+ text, word2ph, phones, tone, language, audiopath
90
+ )
91
+
92
+ spec, wav = self.get_audio(audiopath)
93
+ sid = torch.LongTensor([int(self.spk_map[sid])])
94
+ return (phones, spec, wav, sid, tone, language, bert, ja_bert)
95
+
96
+ def get_audio(self, filename):
97
+ audio, sampling_rate = load_wav_to_torch(filename)
98
+ if sampling_rate != self.sampling_rate:
99
+ raise ValueError(
100
+ "{} {} SR doesn't match target {} SR".format(
101
+ filename, sampling_rate, self.sampling_rate
102
+ )
103
+ )
104
+ audio_norm = audio / self.max_wav_value
105
+ audio_norm = audio_norm.unsqueeze(0)
106
+ spec_filename = filename.replace(".wav", ".spec.pt")
107
+ if self.use_mel_spec_posterior:
108
+ spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
109
+ try:
110
+ spec = torch.load(spec_filename)
111
+ except:
112
+ if self.use_mel_spec_posterior:
113
+ spec = mel_spectrogram_torch(
114
+ audio_norm,
115
+ self.filter_length,
116
+ self.n_mel_channels,
117
+ self.sampling_rate,
118
+ self.hop_length,
119
+ self.win_length,
120
+ self.hparams.mel_fmin,
121
+ self.hparams.mel_fmax,
122
+ center=False,
123
+ )
124
+ else:
125
+ spec = spectrogram_torch(
126
+ audio_norm,
127
+ self.filter_length,
128
+ self.sampling_rate,
129
+ self.hop_length,
130
+ self.win_length,
131
+ center=False,
132
+ )
133
+ spec = torch.squeeze(spec, 0)
134
+ torch.save(spec, spec_filename)
135
+ return spec, audio_norm
136
+
137
+ def get_text(self, text, word2ph, phone, tone, language_str, wav_path):
138
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
139
+ if self.add_blank:
140
+ phone = commons.intersperse(phone, 0)
141
+ tone = commons.intersperse(tone, 0)
142
+ language = commons.intersperse(language, 0)
143
+ for i in range(len(word2ph)):
144
+ word2ph[i] = word2ph[i] * 2
145
+ word2ph[0] += 1
146
+ bert_path = wav_path.replace(".wav", ".bert.pt")
147
+ try:
148
+ bert = torch.load(bert_path)
149
+ assert bert.shape[-1] == len(phone)
150
+ except:
151
+ bert = get_bert(text, word2ph, language_str)
152
+ torch.save(bert, bert_path)
153
+ assert bert.shape[-1] == len(phone), phone
154
+
155
+ if language_str == "ZH":
156
+ bert = bert
157
+ ja_bert = torch.zeros(768, len(phone))
158
+ elif language_str == "JP":
159
+ ja_bert = bert
160
+ bert = torch.zeros(1024, len(phone))
161
+ else:
162
+ bert = torch.zeros(1024, len(phone))
163
+ ja_bert = torch.zeros(768, len(phone))
164
+ assert bert.shape[-1] == len(phone), (
165
+ bert.shape,
166
+ len(phone),
167
+ sum(word2ph),
168
+ p1,
169
+ p2,
170
+ t1,
171
+ t2,
172
+ pold,
173
+ pold2,
174
+ word2ph,
175
+ text,
176
+ w2pho,
177
+ )
178
+ phone = torch.LongTensor(phone)
179
+ tone = torch.LongTensor(tone)
180
+ language = torch.LongTensor(language)
181
+ return bert, ja_bert, phone, tone, language
182
+
183
+ def get_sid(self, sid):
184
+ sid = torch.LongTensor([int(sid)])
185
+ return sid
186
+
187
+ def __getitem__(self, index):
188
+ return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
189
+
190
+ def __len__(self):
191
+ return len(self.audiopaths_sid_text)
192
+
193
+
194
+ class TextAudioSpeakerCollate:
195
+ """Zero-pads model inputs and targets"""
196
+
197
+ def __init__(self, return_ids=False):
198
+ self.return_ids = return_ids
199
+
200
+ def __call__(self, batch):
201
+ """Collate's training batch from normalized text, audio and speaker identities
202
+ PARAMS
203
+ ------
204
+ batch: [text_normalized, spec_normalized, wav_normalized, sid]
205
+ """
206
+ # Right zero-pad all one-hot text sequences to max input length
207
+ _, ids_sorted_decreasing = torch.sort(
208
+ torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
209
+ )
210
+
211
+ max_text_len = max([len(x[0]) for x in batch])
212
+ max_spec_len = max([x[1].size(1) for x in batch])
213
+ max_wav_len = max([x[2].size(1) for x in batch])
214
+
215
+ text_lengths = torch.LongTensor(len(batch))
216
+ spec_lengths = torch.LongTensor(len(batch))
217
+ wav_lengths = torch.LongTensor(len(batch))
218
+ sid = torch.LongTensor(len(batch))
219
+
220
+ text_padded = torch.LongTensor(len(batch), max_text_len)
221
+ tone_padded = torch.LongTensor(len(batch), max_text_len)
222
+ language_padded = torch.LongTensor(len(batch), max_text_len)
223
+ bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
224
+ ja_bert_padded = torch.FloatTensor(len(batch), 768, max_text_len)
225
+
226
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
227
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
228
+ text_padded.zero_()
229
+ tone_padded.zero_()
230
+ language_padded.zero_()
231
+ spec_padded.zero_()
232
+ wav_padded.zero_()
233
+ bert_padded.zero_()
234
+ ja_bert_padded.zero_()
235
+ for i in range(len(ids_sorted_decreasing)):
236
+ row = batch[ids_sorted_decreasing[i]]
237
+
238
+ text = row[0]
239
+ text_padded[i, : text.size(0)] = text
240
+ text_lengths[i] = text.size(0)
241
+
242
+ spec = row[1]
243
+ spec_padded[i, :, : spec.size(1)] = spec
244
+ spec_lengths[i] = spec.size(1)
245
+
246
+ wav = row[2]
247
+ wav_padded[i, :, : wav.size(1)] = wav
248
+ wav_lengths[i] = wav.size(1)
249
+
250
+ sid[i] = row[3]
251
+
252
+ tone = row[4]
253
+ tone_padded[i, : tone.size(0)] = tone
254
+
255
+ language = row[5]
256
+ language_padded[i, : language.size(0)] = language
257
+
258
+ bert = row[6]
259
+ bert_padded[i, :, : bert.size(1)] = bert
260
+
261
+ ja_bert = row[7]
262
+ ja_bert_padded[i, :, : ja_bert.size(1)] = ja_bert
263
+
264
+ return (
265
+ text_padded,
266
+ text_lengths,
267
+ spec_padded,
268
+ spec_lengths,
269
+ wav_padded,
270
+ wav_lengths,
271
+ sid,
272
+ tone_padded,
273
+ language_padded,
274
+ bert_padded,
275
+ ja_bert_padded,
276
+ )
277
+
278
+
279
+ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
280
+ """
281
+ Maintain similar input lengths in a batch.
282
+ Length groups are specified by boundaries.
283
+ Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
284
+
285
+ It removes samples which are not included in the boundaries.
286
+ Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
287
+ """
288
+
289
+ def __init__(
290
+ self,
291
+ dataset,
292
+ batch_size,
293
+ boundaries,
294
+ num_replicas=None,
295
+ rank=None,
296
+ shuffle=True,
297
+ ):
298
+ super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
299
+ self.lengths = dataset.lengths
300
+ self.batch_size = batch_size
301
+ self.boundaries = boundaries
302
+
303
+ self.buckets, self.num_samples_per_bucket = self._create_buckets()
304
+ self.total_size = sum(self.num_samples_per_bucket)
305
+ self.num_samples = self.total_size // self.num_replicas
306
+
307
+ def _create_buckets(self):
308
+ buckets = [[] for _ in range(len(self.boundaries) - 1)]
309
+ for i in range(len(self.lengths)):
310
+ length = self.lengths[i]
311
+ idx_bucket = self._bisect(length)
312
+ if idx_bucket != -1:
313
+ buckets[idx_bucket].append(i)
314
+
315
+ try:
316
+ for i in range(len(buckets) - 1, 0, -1):
317
+ if len(buckets[i]) == 0:
318
+ buckets.pop(i)
319
+ self.boundaries.pop(i + 1)
320
+ assert all(len(bucket) > 0 for bucket in buckets)
321
+ # When one bucket is not traversed
322
+ except Exception as e:
323
+ print("Bucket warning ", e)
324
+ for i in range(len(buckets) - 1, -1, -1):
325
+ if len(buckets[i]) == 0:
326
+ buckets.pop(i)
327
+ self.boundaries.pop(i + 1)
328
+
329
+ num_samples_per_bucket = []
330
+ for i in range(len(buckets)):
331
+ len_bucket = len(buckets[i])
332
+ total_batch_size = self.num_replicas * self.batch_size
333
+ rem = (
334
+ total_batch_size - (len_bucket % total_batch_size)
335
+ ) % total_batch_size
336
+ num_samples_per_bucket.append(len_bucket + rem)
337
+ return buckets, num_samples_per_bucket
338
+
339
+ def __iter__(self):
340
+ # deterministically shuffle based on epoch
341
+ g = torch.Generator()
342
+ g.manual_seed(self.epoch)
343
+
344
+ indices = []
345
+ if self.shuffle:
346
+ for bucket in self.buckets:
347
+ indices.append(torch.randperm(len(bucket), generator=g).tolist())
348
+ else:
349
+ for bucket in self.buckets:
350
+ indices.append(list(range(len(bucket))))
351
+
352
+ batches = []
353
+ for i in range(len(self.buckets)):
354
+ bucket = self.buckets[i]
355
+ len_bucket = len(bucket)
356
+ if len_bucket == 0:
357
+ continue
358
+ ids_bucket = indices[i]
359
+ num_samples_bucket = self.num_samples_per_bucket[i]
360
+
361
+ # add extra samples to make it evenly divisible
362
+ rem = num_samples_bucket - len_bucket
363
+ ids_bucket = (
364
+ ids_bucket
365
+ + ids_bucket * (rem // len_bucket)
366
+ + ids_bucket[: (rem % len_bucket)]
367
+ )
368
+
369
+ # subsample
370
+ ids_bucket = ids_bucket[self.rank :: self.num_replicas]
371
+
372
+ # batching
373
+ for j in range(len(ids_bucket) // self.batch_size):
374
+ batch = [
375
+ bucket[idx]
376
+ for idx in ids_bucket[
377
+ j * self.batch_size : (j + 1) * self.batch_size
378
+ ]
379
+ ]
380
+ batches.append(batch)
381
+
382
+ if self.shuffle:
383
+ batch_ids = torch.randperm(len(batches), generator=g).tolist()
384
+ batches = [batches[i] for i in batch_ids]
385
+ self.batches = batches
386
+
387
+ assert len(self.batches) * self.batch_size == self.num_samples
388
+ return iter(self.batches)
389
+
390
+ def _bisect(self, x, lo=0, hi=None):
391
+ if hi is None:
392
+ hi = len(self.boundaries) - 1
393
+
394
+ if hi > lo:
395
+ mid = (hi + lo) // 2
396
+ if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
397
+ return mid
398
+ elif x <= self.boundaries[mid]:
399
+ return self._bisect(x, lo, mid)
400
+ else:
401
+ return self._bisect(x, mid + 1, hi)
402
+ else:
403
+ return -1
404
+
405
+ def __len__(self):
406
+ return self.num_samples // self.batch_size
generation_logs.txt ADDED
The diff for this file is too large to render. See raw diff
 
logs/agnes_digital_爱丽数码_アグネスデジタル/G_10500.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:291c9cc3bf456908cd20f1f1381a6967e090007602b3fb57a5a345058de88a61
3
+ size 857922317
logs/agnes_digital_爱丽数码_アグネスデジタル/config.json ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 20,
4
+ "eval_interval": 500,
5
+ "seed": 52,
6
+ "epochs": 100,
7
+ "learning_rate": 1e-04,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 4,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "skip_optimizer": true
22
+ },
23
+ "data": {
24
+ "training_files": "filelists/train.list",
25
+ "validation_files": "filelists/val.list",
26
+ "max_wav_value": 32768.0,
27
+ "sampling_rate": 44100,
28
+ "filter_length": 2048,
29
+ "hop_length": 512,
30
+ "win_length": 2048,
31
+ "n_mel_channels": 128,
32
+ "mel_fmin": 0.0,
33
+ "mel_fmax": null,
34
+ "add_blank": true,
35
+ "n_speakers": 256,
36
+ "cleaned_text": true,
37
+ "spk2id": {
38
+ "爱丽数码": 17
39
+ }
40
+ },
41
+ "model": {
42
+ "use_spk_conditioned_encoder": true,
43
+ "use_noise_scaled_mas": true,
44
+ "use_mel_posterior_encoder": false,
45
+ "use_duration_discriminator": true,
46
+ "inter_channels": 192,
47
+ "hidden_channels": 192,
48
+ "filter_channels": 768,
49
+ "n_heads": 2,
50
+ "n_layers": 6,
51
+ "kernel_size": 3,
52
+ "p_dropout": 0.1,
53
+ "resblock": "1",
54
+ "resblock_kernel_sizes": [
55
+ 3,
56
+ 7,
57
+ 11
58
+ ],
59
+ "resblock_dilation_sizes": [
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ],
70
+ [
71
+ 1,
72
+ 3,
73
+ 5
74
+ ]
75
+ ],
76
+ "upsample_rates": [
77
+ 8,
78
+ 8,
79
+ 2,
80
+ 2,
81
+ 2
82
+ ],
83
+ "upsample_initial_channel": 512,
84
+ "upsample_kernel_sizes": [
85
+ 16,
86
+ 16,
87
+ 8,
88
+ 2,
89
+ 2
90
+ ],
91
+ "n_layers_q": 3,
92
+ "use_spectral_norm": false,
93
+ "gin_channels": 256
94
+ }
95
+ }
logs/curren_chan_真机伶_カレンチャン/G_16000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:763b4474e5d9accc1ea3e646cae7cb743f1b26914cb55931c5302308e972fde3
3
+ size 857605376
logs/curren_chan_真机伶_カレンチャン/config.json ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 20,
4
+ "eval_interval": 500,
5
+ "seed": 52,
6
+ "epochs": 10000,
7
+ "learning_rate": 3e-05,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 4,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "skip_optimizer": true
22
+ },
23
+ "data": {
24
+ "training_files": "filelists/train.list",
25
+ "validation_files": "filelists/val.list",
26
+ "max_wav_value": 32768.0,
27
+ "sampling_rate": 44100,
28
+ "filter_length": 2048,
29
+ "hop_length": 512,
30
+ "win_length": 2048,
31
+ "n_mel_channels": 128,
32
+ "mel_fmin": 0.0,
33
+ "mel_fmax": null,
34
+ "add_blank": true,
35
+ "n_speakers": 256,
36
+ "cleaned_text": true,
37
+ "spk2id": {
38
+ "真机伶": 37
39
+ }
40
+ },
41
+ "model": {
42
+ "use_spk_conditioned_encoder": true,
43
+ "use_noise_scaled_mas": true,
44
+ "use_mel_posterior_encoder": false,
45
+ "use_duration_discriminator": true,
46
+ "inter_channels": 192,
47
+ "hidden_channels": 192,
48
+ "filter_channels": 768,
49
+ "n_heads": 2,
50
+ "n_layers": 6,
51
+ "kernel_size": 3,
52
+ "p_dropout": 0.1,
53
+ "resblock": "1",
54
+ "resblock_kernel_sizes": [
55
+ 3,
56
+ 7,
57
+ 11
58
+ ],
59
+ "resblock_dilation_sizes": [
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ],
70
+ [
71
+ 1,
72
+ 3,
73
+ 5
74
+ ]
75
+ ],
76
+ "upsample_rates": [
77
+ 8,
78
+ 8,
79
+ 2,
80
+ 2,
81
+ 2
82
+ ],
83
+ "upsample_initial_channel": 512,
84
+ "upsample_kernel_sizes": [
85
+ 16,
86
+ 16,
87
+ 8,
88
+ 2,
89
+ 2
90
+ ],
91
+ "n_layers_q": 3,
92
+ "use_spectral_norm": false,
93
+ "gin_channels": 256
94
+ }
95
+ }
logs/matikane_fukukitaru_待兼福来_マチカネフクキタル/DUR_10000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f14d296192581112b7c639951f05cda856a3d57825c0acb3509323bafba2036
3
+ size 6891415
logs/matikane_fukukitaru_待兼福来_マチカネフクキタル/G_10000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fce2c3fab390201a55f7c6ac6d93865ed222d172d965d460e902913f1ace8561
3
+ size 857922317
logs/matikane_fukukitaru_待兼福来_マチカネフクキタル/config.json ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 20,
4
+ "eval_interval": 500,
5
+ "seed": 52,
6
+ "epochs": 10000,
7
+ "learning_rate": 1e-04,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 4,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "skip_optimizer": true
22
+ },
23
+ "data": {
24
+ "training_files": "filelists/train.list",
25
+ "validation_files": "filelists/val.list",
26
+ "max_wav_value": 32768.0,
27
+ "sampling_rate": 44100,
28
+ "filter_length": 2048,
29
+ "hop_length": 512,
30
+ "win_length": 2048,
31
+ "n_mel_channels": 128,
32
+ "mel_fmin": 0.0,
33
+ "mel_fmax": null,
34
+ "add_blank": true,
35
+ "n_speakers": 256,
36
+ "cleaned_text": true,
37
+ "spk2id": {
38
+ "待兼福来": 50
39
+ }
40
+ },
41
+ "model": {
42
+ "use_spk_conditioned_encoder": true,
43
+ "use_noise_scaled_mas": true,
44
+ "use_mel_posterior_encoder": false,
45
+ "use_duration_discriminator": true,
46
+ "inter_channels": 192,
47
+ "hidden_channels": 192,
48
+ "filter_channels": 768,
49
+ "n_heads": 2,
50
+ "n_layers": 6,
51
+ "kernel_size": 3,
52
+ "p_dropout": 0.1,
53
+ "resblock": "1",
54
+ "resblock_kernel_sizes": [
55
+ 3,
56
+ 7,
57
+ 11
58
+ ],
59
+ "resblock_dilation_sizes": [
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ],
70
+ [
71
+ 1,
72
+ 3,
73
+ 5
74
+ ]
75
+ ],
76
+ "upsample_rates": [
77
+ 8,
78
+ 8,
79
+ 2,
80
+ 2,
81
+ 2
82
+ ],
83
+ "upsample_initial_channel": 512,
84
+ "upsample_kernel_sizes": [
85
+ 16,
86
+ 16,
87
+ 8,
88
+ 2,
89
+ 2
90
+ ],
91
+ "n_layers_q": 3,
92
+ "use_spectral_norm": false,
93
+ "gin_channels": 256
94
+ }
95
+ }
logs/matikane_tannhauser_待兼诗歌剧_マチカネタンホイサ/G_20500.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbc10e790f66eccd4241b50bad798245474123e15858c11c80c79d97ee2fc3b5
3
+ size 857605376
logs/matikane_tannhauser_待兼诗歌剧_マチカネタンホイサ/config.json ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 20,
4
+ "eval_interval": 500,
5
+ "seed": 52,
6
+ "epochs": 10000,
7
+ "learning_rate": 1e-04,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 4,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "skip_optimizer": true
22
+ },
23
+ "data": {
24
+ "training_files": "filelists/train.list",
25
+ "validation_files": "filelists/val.list",
26
+ "max_wav_value": 32768.0,
27
+ "sampling_rate": 44100,
28
+ "filter_length": 2048,
29
+ "hop_length": 512,
30
+ "win_length": 2048,
31
+ "n_mel_channels": 128,
32
+ "mel_fmin": 0.0,
33
+ "mel_fmax": null,
34
+ "add_blank": true,
35
+ "n_speakers": 256,
36
+ "cleaned_text": true,
37
+ "spk2id": {
38
+ "待兼诗歌剧": 55
39
+ }
40
+ },
41
+ "model": {
42
+ "use_spk_conditioned_encoder": true,
43
+ "use_noise_scaled_mas": true,
44
+ "use_mel_posterior_encoder": false,
45
+ "use_duration_discriminator": true,
46
+ "inter_channels": 192,
47
+ "hidden_channels": 192,
48
+ "filter_channels": 768,
49
+ "n_heads": 2,
50
+ "n_layers": 6,
51
+ "kernel_size": 3,
52
+ "p_dropout": 0.1,
53
+ "resblock": "1",
54
+ "resblock_kernel_sizes": [
55
+ 3,
56
+ 7,
57
+ 11
58
+ ],
59
+ "resblock_dilation_sizes": [
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ],
70
+ [
71
+ 1,
72
+ 3,
73
+ 5
74
+ ]
75
+ ],
76
+ "upsample_rates": [
77
+ 8,
78
+ 8,
79
+ 2,
80
+ 2,
81
+ 2
82
+ ],
83
+ "upsample_initial_channel": 512,
84
+ "upsample_kernel_sizes": [
85
+ 16,
86
+ 16,
87
+ 8,
88
+ 2,
89
+ 2
90
+ ],
91
+ "n_layers_q": 3,
92
+ "use_spectral_norm": false,
93
+ "gin_channels": 256
94
+ }
95
+ }
logs/natuki/DUR_175000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:359a8dc9c44dcd49c8c6d9a50cbd379a19590e442c26f39856992641716c39ea
3
+ size 6885739
logs/natuki/DUR_61500.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25465948a009d6d889ef36e98732a8a9a8a2d05d9fef056f1a93197d8f1e4a67
3
+ size 6885739
logs/natuki/D_175000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cb03ef687b9351a124fcc4a867cb302030c8fefd5e260ebe72a45866cc583a1
3
+ size 561070567
logs/natuki/D_61500.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01544b4e98d419a7c649c3eac0dc4857d170eaa55364d94442298cfe7d9fc752
3
+ size 561070567
logs/natuki/G_175000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1381b7a3f3360afa5fdb5bd3ea920e027363157ac32a324423bd12f6ce7a15d3
3
+ size 857605376
logs/natuki/G_61500.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91bfc97f96ca2733bea7ce8f0ed51563bbc2975d21fc4bcd601c2b275d3fb736
3
+ size 857605376
logs/natuki/config.json ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 20,
4
+ "eval_interval": 500,
5
+ "seed": 52,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.00001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 4,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "skip_optimizer": true
22
+ },
23
+ "data": {
24
+ "training_files": "filelists/train.list",
25
+ "validation_files": "filelists/val.list",
26
+ "max_wav_value": 32768.0,
27
+ "sampling_rate": 44100,
28
+ "filter_length": 2048,
29
+ "hop_length": 512,
30
+ "win_length": 2048,
31
+ "n_mel_channels": 128,
32
+ "mel_fmin": 0.0,
33
+ "mel_fmax": null,
34
+ "add_blank": true,
35
+ "n_speakers": 256,
36
+ "cleaned_text": true,
37
+ "spk2id": {
38
+ "natuki1": 0,
39
+ "natuki2": 1
40
+ }
41
+ },
42
+ "model": {
43
+ "use_spk_conditioned_encoder": true,
44
+ "use_noise_scaled_mas": true,
45
+ "use_mel_posterior_encoder": false,
46
+ "use_duration_discriminator": true,
47
+ "inter_channels": 192,
48
+ "hidden_channels": 192,
49
+ "filter_channels": 768,
50
+ "n_heads": 2,
51
+ "n_layers": 6,
52
+ "kernel_size": 3,
53
+ "p_dropout": 0.1,
54
+ "resblock": "1",
55
+ "resblock_kernel_sizes": [
56
+ 3,
57
+ 7,
58
+ 11
59
+ ],
60
+ "resblock_dilation_sizes": [
61
+ [
62
+ 1,
63
+ 3,
64
+ 5
65
+ ],
66
+ [
67
+ 1,
68
+ 3,
69
+ 5
70
+ ],
71
+ [
72
+ 1,
73
+ 3,
74
+ 5
75
+ ]
76
+ ],
77
+ "upsample_rates": [
78
+ 8,
79
+ 8,
80
+ 2,
81
+ 2,
82
+ 2
83
+ ],
84
+ "upsample_initial_channel": 512,
85
+ "upsample_kernel_sizes": [
86
+ 16,
87
+ 16,
88
+ 8,
89
+ 2,
90
+ 2
91
+ ],
92
+ "n_layers_q": 3,
93
+ "use_spectral_norm": false,
94
+ "gin_channels": 256
95
+ }
96
+ }
logs/rice_shower_米浴_ライスシャワー/G_16500.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c677ee5c4a832786d630b8e03f1e9f8d506a9d38df1e056aa847aca66a45803
3
+ size 857605376
logs/rice_shower_米浴_ライスシャワー/config.json ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 20,
4
+ "eval_interval": 500,
5
+ "seed": 52,
6
+ "epochs": 10000,
7
+ "learning_rate": 1e-05,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 4,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "skip_optimizer": true
22
+ },
23
+ "data": {
24
+ "training_files": "filelists/train.list",
25
+ "validation_files": "filelists/val.list",
26
+ "max_wav_value": 32768.0,
27
+ "sampling_rate": 44100,
28
+ "filter_length": 2048,
29
+ "hop_length": 512,
30
+ "win_length": 2048,
31
+ "n_mel_channels": 128,
32
+ "mel_fmin": 0.0,
33
+ "mel_fmax": null,
34
+ "add_blank": true,
35
+ "n_speakers": 256,
36
+ "cleaned_text": true,
37
+ "spk2id": {
38
+ "特别周": 0,
39
+ "无声铃鹿": 1,
40
+ "丸善斯基": 2,
41
+ "富士奇迹": 3,
42
+ "东海帝皇": 4,
43
+ "小栗帽": 5,
44
+ "黄金船": 6,
45
+ "伏特加": 7,
46
+ "大和赤骥": 8,
47
+ "菱亚马逊": 9,
48
+ "草上飞": 10,
49
+ "大树快车": 11,
50
+ "目白麦昆": 12,
51
+ "神鹰": 13,
52
+ "鲁道夫象征": 14,
53
+ "好歌剧": 15,
54
+ "成田白仁": 16,
55
+ "爱丽数码": 17,
56
+ "美妙姿势": 18,
57
+ "摩耶重炮": 19,
58
+ "玉藻十字": 20,
59
+ "琵琶晨光": 21,
60
+ "目白赖恩": 22,
61
+ "美浦波旁": 23,
62
+ "雪中美人": 24,
63
+ "米浴": 25,
64
+ "爱丽速子": 26,
65
+ "爱慕织姬": 27,
66
+ "曼城茶座": 28,
67
+ "气槽": 29,
68
+ "星云天空": 30,
69
+ "菱曙": 31,
70
+ "艾尼斯风神": 32,
71
+ "稻荷一": 33,
72
+ "空中神宫": 34,
73
+ "川上公主": 35,
74
+ "黄金城": 36,
75
+ "真机伶": 37,
76
+ "荣进闪耀": 38,
77
+ "采珠": 39,
78
+ "新光风": 40,
79
+ "超级小海湾": 41,
80
+ "荒漠英雄": 42,
81
+ "东瀛佐敦": 43,
82
+ "中山庆典": 44,
83
+ "成田大进": 45,
84
+ "西野花": 46,
85
+ "醒目飞鹰": 47,
86
+ "春乌拉拉": 48,
87
+ "青竹回忆": 49,
88
+ "待兼福来": 50,
89
+ "Mr CB": 51,
90
+ "美丽周日": 52,
91
+ "名将怒涛": 53,
92
+ "帝王光辉": 54,
93
+ "待兼诗歌剧": 55,
94
+ "生野狄杜斯": 56,
95
+ "优秀素质": 57,
96
+ "双涡轮": 58,
97
+ "目白多伯": 59,
98
+ "目白善信": 60,
99
+ "大拓太阳神": 61,
100
+ "北部玄驹": 62,
101
+ "目白阿尔丹": 63,
102
+ "八重无敌": 64,
103
+ "里见光钻": 65,
104
+ "天狼星象征": 66,
105
+ "樱花桂冠": 67,
106
+ "成田路": 68,
107
+ "也文摄辉": 69,
108
+ "吉兆": 70,
109
+ "鹤丸刚志": 71,
110
+ "谷野美酒": 72,
111
+ "第一红宝石": 73,
112
+ "目白高峰": 74,
113
+ "真弓快车": 75,
114
+ "里见皇冠": 76,
115
+ "高尚骏逸": 77,
116
+ "凯斯奇迹": 78,
117
+ "森林宝穴": 79,
118
+ "小林力奇": 80,
119
+ "奇瑞骏": 81,
120
+ "葛城王牌": 82,
121
+ "新宇宙": 83,
122
+ "菱钻奇宝": 84,
123
+ "望族": 85,
124
+ "骏川手纲": 86,
125
+ "秋川弥生": 87,
126
+ "乙名史悦子": 88,
127
+ "桐生院葵": 89,
128
+ "安心泽刺刺美": 90,
129
+ "达利阿拉伯": 91,
130
+ "高多芬柏布": 92,
131
+ "佐岳五月": 93,
132
+ "胜利奖券": 94,
133
+ "樱花进王": 95,
134
+ "东商变革": 96,
135
+ "微光飞驹": 97,
136
+ "樱花千代王": 98,
137
+ "跳舞城": 99,
138
+ "樫本理子": 100,
139
+ "明亮圣辉": 101,
140
+ "拜耶土耳其": 102
141
+ }
142
+ },
143
+ "model": {
144
+ "use_spk_conditioned_encoder": true,
145
+ "use_noise_scaled_mas": true,
146
+ "use_mel_posterior_encoder": false,
147
+ "use_duration_discriminator": true,
148
+ "inter_channels": 192,
149
+ "hidden_channels": 192,
150
+ "filter_channels": 768,
151
+ "n_heads": 2,
152
+ "n_layers": 6,
153
+ "kernel_size": 3,
154
+ "p_dropout": 0.1,
155
+ "resblock": "1",
156
+ "resblock_kernel_sizes": [
157
+ 3,
158
+ 7,
159
+ 11
160
+ ],
161
+ "resblock_dilation_sizes": [
162
+ [
163
+ 1,
164
+ 3,
165
+ 5
166
+ ],
167
+ [
168
+ 1,
169
+ 3,
170
+ 5
171
+ ],
172
+ [
173
+ 1,
174
+ 3,
175
+ 5
176
+ ]
177
+ ],
178
+ "upsample_rates": [
179
+ 8,
180
+ 8,
181
+ 2,
182
+ 2,
183
+ 2
184
+ ],
185
+ "upsample_initial_channel": 512,
186
+ "upsample_kernel_sizes": [
187
+ 16,
188
+ 16,
189
+ 8,
190
+ 2,
191
+ 2
192
+ ],
193
+ "n_layers_q": 3,
194
+ "use_spectral_norm": false,
195
+ "gin_channels": 256
196
+ }
197
+ }
logs/satono_diamond_里见光钻_サトノダイヤモンド/G_10000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:245189693a17b8aa4f2bb0f80e07972b45df7821038f38c50875a44d16c22e6f
3
+ size 857922317
logs/satono_diamond_里见光钻_サトノダイヤモンド/config.json ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 20,
4
+ "eval_interval": 500,
5
+ "seed": 52,
6
+ "epochs": 10000,
7
+ "learning_rate": 1e-04,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 4,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "skip_optimizer": true
22
+ },
23
+ "data": {
24
+ "training_files": "filelists/train.list",
25
+ "validation_files": "filelists/val.list",
26
+ "max_wav_value": 32768.0,
27
+ "sampling_rate": 44100,
28
+ "filter_length": 2048,
29
+ "hop_length": 512,
30
+ "win_length": 2048,
31
+ "n_mel_channels": 128,
32
+ "mel_fmin": 0.0,
33
+ "mel_fmax": null,
34
+ "add_blank": true,
35
+ "n_speakers": 256,
36
+ "cleaned_text": true,
37
+ "spk2id": {
38
+ "里见光钻": 65
39
+ }
40
+ },
41
+ "model": {
42
+ "use_spk_conditioned_encoder": true,
43
+ "use_noise_scaled_mas": true,
44
+ "use_mel_posterior_encoder": false,
45
+ "use_duration_discriminator": true,
46
+ "inter_channels": 192,
47
+ "hidden_channels": 192,
48
+ "filter_channels": 768,
49
+ "n_heads": 2,
50
+ "n_layers": 6,
51
+ "kernel_size": 3,
52
+ "p_dropout": 0.1,
53
+ "resblock": "1",
54
+ "resblock_kernel_sizes": [
55
+ 3,
56
+ 7,
57
+ 11
58
+ ],
59
+ "resblock_dilation_sizes": [
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ],
70
+ [
71
+ 1,
72
+ 3,
73
+ 5
74
+ ]
75
+ ],
76
+ "upsample_rates": [
77
+ 8,
78
+ 8,
79
+ 2,
80
+ 2,
81
+ 2
82
+ ],
83
+ "upsample_initial_channel": 512,
84
+ "upsample_kernel_sizes": [
85
+ 16,
86
+ 16,
87
+ 8,
88
+ 2,
89
+ 2
90
+ ],
91
+ "n_layers_q": 3,
92
+ "use_spectral_norm": false,
93
+ "gin_channels": 256
94
+ }
95
+ }
losses.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def feature_loss(fmap_r, fmap_g):
5
+ loss = 0
6
+ for dr, dg in zip(fmap_r, fmap_g):
7
+ for rl, gl in zip(dr, dg):
8
+ rl = rl.float().detach()
9
+ gl = gl.float()
10
+ loss += torch.mean(torch.abs(rl - gl))
11
+
12
+ return loss * 2
13
+
14
+
15
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
16
+ loss = 0
17
+ r_losses = []
18
+ g_losses = []
19
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
20
+ dr = dr.float()
21
+ dg = dg.float()
22
+ r_loss = torch.mean((1 - dr) ** 2)
23
+ g_loss = torch.mean(dg**2)
24
+ loss += r_loss + g_loss
25
+ r_losses.append(r_loss.item())
26
+ g_losses.append(g_loss.item())
27
+
28
+ return loss, r_losses, g_losses
29
+
30
+
31
+ def generator_loss(disc_outputs):
32
+ loss = 0
33
+ gen_losses = []
34
+ for dg in disc_outputs:
35
+ dg = dg.float()
36
+ l = torch.mean((1 - dg) ** 2)
37
+ gen_losses.append(l)
38
+ loss += l
39
+
40
+ return loss, gen_losses
41
+
42
+
43
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
44
+ """
45
+ z_p, logs_q: [b, h, t_t]
46
+ m_p, logs_p: [b, h, t_t]
47
+ """
48
+ z_p = z_p.float()
49
+ logs_q = logs_q.float()
50
+ m_p = m_p.float()
51
+ logs_p = logs_p.float()
52
+ z_mask = z_mask.float()
53
+
54
+ kl = logs_p - logs_q - 0.5
55
+ kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
56
+ kl = torch.sum(kl * z_mask)
57
+ l = kl / torch.sum(z_mask)
58
+ return l
mel_processing.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.utils.data
3
+ from librosa.filters import mel as librosa_mel_fn
4
+
5
+ MAX_WAV_VALUE = 32768.0
6
+
7
+
8
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
9
+ """
10
+ PARAMS
11
+ ------
12
+ C: compression factor
13
+ """
14
+ return torch.log(torch.clamp(x, min=clip_val) * C)
15
+
16
+
17
+ def dynamic_range_decompression_torch(x, C=1):
18
+ """
19
+ PARAMS
20
+ ------
21
+ C: compression factor used to compress
22
+ """
23
+ return torch.exp(x) / C
24
+
25
+
26
+ def spectral_normalize_torch(magnitudes):
27
+ output = dynamic_range_compression_torch(magnitudes)
28
+ return output
29
+
30
+
31
+ def spectral_de_normalize_torch(magnitudes):
32
+ output = dynamic_range_decompression_torch(magnitudes)
33
+ return output
34
+
35
+
36
+ mel_basis = {}
37
+ hann_window = {}
38
+
39
+
40
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
41
+ if torch.min(y) < -1.0:
42
+ print("min value is ", torch.min(y))
43
+ if torch.max(y) > 1.0:
44
+ print("max value is ", torch.max(y))
45
+
46
+ global hann_window
47
+ dtype_device = str(y.dtype) + "_" + str(y.device)
48
+ wnsize_dtype_device = str(win_size) + "_" + dtype_device
49
+ if wnsize_dtype_device not in hann_window:
50
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
51
+ dtype=y.dtype, device=y.device
52
+ )
53
+
54
+ y = torch.nn.functional.pad(
55
+ y.unsqueeze(1),
56
+ (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
57
+ mode="reflect",
58
+ )
59
+ y = y.squeeze(1)
60
+
61
+ spec = torch.stft(
62
+ y,
63
+ n_fft,
64
+ hop_length=hop_size,
65
+ win_length=win_size,
66
+ window=hann_window[wnsize_dtype_device],
67
+ center=center,
68
+ pad_mode="reflect",
69
+ normalized=False,
70
+ onesided=True,
71
+ return_complex=False,
72
+ )
73
+
74
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
75
+ return spec
76
+
77
+
78
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
79
+ global mel_basis
80
+ dtype_device = str(spec.dtype) + "_" + str(spec.device)
81
+ fmax_dtype_device = str(fmax) + "_" + dtype_device
82
+ if fmax_dtype_device not in mel_basis:
83
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
84
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
85
+ dtype=spec.dtype, device=spec.device
86
+ )
87
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
88
+ spec = spectral_normalize_torch(spec)
89
+ return spec
90
+
91
+
92
+ def mel_spectrogram_torch(
93
+ y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
94
+ ):
95
+ if torch.min(y) < -1.0:
96
+ print("min value is ", torch.min(y))
97
+ if torch.max(y) > 1.0:
98
+ print("max value is ", torch.max(y))
99
+
100
+ global mel_basis, hann_window
101
+ dtype_device = str(y.dtype) + "_" + str(y.device)
102
+ fmax_dtype_device = str(fmax) + "_" + dtype_device
103
+ wnsize_dtype_device = str(win_size) + "_" + dtype_device
104
+ if fmax_dtype_device not in mel_basis:
105
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
106
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
107
+ dtype=y.dtype, device=y.device
108
+ )
109
+ if wnsize_dtype_device not in hann_window:
110
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
111
+ dtype=y.dtype, device=y.device
112
+ )
113
+
114
+ y = torch.nn.functional.pad(
115
+ y.unsqueeze(1),
116
+ (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
117
+ mode="reflect",
118
+ )
119
+ y = y.squeeze(1)
120
+
121
+ spec = torch.stft(
122
+ y,
123
+ n_fft,
124
+ hop_length=hop_size,
125
+ win_length=win_size,
126
+ window=hann_window[wnsize_dtype_device],
127
+ center=center,
128
+ pad_mode="reflect",
129
+ normalized=False,
130
+ onesided=True,
131
+ return_complex=False,
132
+ )
133
+
134
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
135
+
136
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
137
+ spec = spectral_normalize_torch(spec)
138
+
139
+ return spec