Spaces:
Runtime error
Runtime error
import streamlit as st | |
from dotenv import load_dotenv | |
import pickle | |
from PyPDF2 import PdfReader | |
from streamlit_extras.add_vertical_space import add_vertical_space | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import OpenAI | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.callbacks import get_openai_callback | |
import os | |
# Sidebar contents | |
with st.sidebar: | |
st.title('π€π¬ LLM Chat App') | |
st.markdown(''' | |
## About | |
This app is an LLM-powered chatbot built using: | |
- [Streamlit](https://streamlit.io/) | |
- [LangChain](https://python.langchain.com/) | |
- [OpenAI](https://platform.openai.com/docs/models) LLM model | |
''') | |
add_vertical_space(5) | |
st.write('Made with β€οΈ by [Prompt Engineer](https://youtube.com/@engineerprompt)') | |
load_dotenv() | |
def main(): | |
st.header("Chat with PDF π¬") | |
# upload a PDF file | |
pdf = st.file_uploader("Upload your PDF", type='pdf') | |
# st.write(pdf) | |
if pdf is not None: | |
pdf_reader = PdfReader(pdf) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text=text) | |
# # embeddings | |
store_name = pdf.name[:-4] | |
st.write(f'{store_name}') | |
# st.write(chunks) | |
if os.path.exists(f"{store_name}.pkl"): | |
with open(f"{store_name}.pkl", "rb") as f: | |
VectorStore = pickle.load(f) | |
# st.write('Embeddings Loaded from the Disk')s | |
else: | |
embeddings = OpenAIEmbeddings() | |
VectorStore = FAISS.from_texts(chunks, embedding=embeddings) | |
with open(f"{store_name}.pkl", "wb") as f: | |
pickle.dump(VectorStore, f) | |
# embeddings = OpenAIEmbeddings() | |
# VectorStore = FAISS.from_texts(chunks, embedding=embeddings) | |
# Accept user questions/query | |
query = st.text_input("Ask questions about your PDF file:") | |
# st.write(query) | |
if query: | |
docs = VectorStore.similarity_search(query=query, k=3) | |
llm = OpenAI() | |
chain = load_qa_chain(llm=llm, chain_type="stuff") | |
with get_openai_callback() as cb: | |
response = chain.run(input_documents=docs, question=query) | |
print(cb) | |
st.write(response) | |
if __name__ == '__main__': | |
main() |