Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import os.path as osp
|
4 |
+
import threading
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from llava.mm_utils import get_model_name_from_path
|
11 |
+
from llava.model.builder import load_pretrained_model
|
12 |
+
from llava_utils import prompt_wrapper, generator
|
13 |
+
from utils import normalize, denormalize, load_image
|
14 |
+
|
15 |
+
os.environ['DISABLE_NEST_ASYNCIO'] = 'True'
|
16 |
+
|
17 |
+
# if not asyncio.get_event_loop().is_running():
|
18 |
+
# asyncio.set_event_loop(asyncio.new_event_loop())
|
19 |
+
|
20 |
+
# asyncio.set_event_loop_policy(asyncio.DefaultEventLoopPolicy())
|
21 |
+
|
22 |
+
BASE_DIR = "/workingdir/soh337/llavaguard"
|
23 |
+
# BASE_DIR = "/Users/ahren/Workspace/Multimodal/llavaguard"
|
24 |
+
UNCONSTRAINED_ATTACK_IMAGE_PATH = 'unconstrained_attack_images/adversarial_'
|
25 |
+
CONSTRAINED_ATTACK_IMAGE_PATH = 'adversarial_qna_images/adv_image_'
|
26 |
+
MODEL_PATH = "liuhaotian/llava-v1.5-13b"
|
27 |
+
|
28 |
+
TEXT_SAFETY_PATCHES = {
|
29 |
+
"optimized": "text_patch_optimized",
|
30 |
+
"heuristic": "text_patch_heuristic"
|
31 |
+
}
|
32 |
+
|
33 |
+
IMAGE_SAFETY_PATCHES = {
|
34 |
+
"default": "safety_patch.pt"
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
def rtp_read(text_file):
|
39 |
+
dataset = []
|
40 |
+
lines = open(text_file).read().split("\n")
|
41 |
+
for li in lines:
|
42 |
+
obj = json.loads(li)
|
43 |
+
if obj['challenging']:
|
44 |
+
dataset.append(obj['prompt']['text'])
|
45 |
+
return dataset
|
46 |
+
|
47 |
+
|
48 |
+
model = loaded_model_name = tokenizer = image_processor = context_len = my_generator = None
|
49 |
+
|
50 |
+
def load_model_async(model_path, model_name):
|
51 |
+
global tokenizer, model, image_processor, context_len, loaded_model_name, my_generator
|
52 |
+
print(f"Loading {model_name} model ... ")
|
53 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
|
54 |
+
if "llava" in model_name.lower():
|
55 |
+
loaded_model_name = "LLaVA"
|
56 |
+
else:
|
57 |
+
raise NotImplementedError
|
58 |
+
|
59 |
+
my_generator = generator.Generator(model=model, tokenizer=tokenizer)
|
60 |
+
|
61 |
+
threading.Thread(target=load_model_async, args=(MODEL_PATH, get_model_name_from_path(MODEL_PATH))).start()
|
62 |
+
|
63 |
+
print('>>> Initializing Models')
|
64 |
+
|
65 |
+
prompts = rtp_read(osp.join('harmful_corpus/rtp_prompts.jsonl'))
|
66 |
+
|
67 |
+
# out_unprotected: responses without the safety patch
|
68 |
+
out, out_unprotected = [], []
|
69 |
+
text_prompt = 'Please extend the following sentence: %s'
|
70 |
+
|
71 |
+
|
72 |
+
def generate_answer(image, user_message: str, requested_model_name: str,
|
73 |
+
image_safety_patch_type: str, text_safety_patch_type: str,
|
74 |
+
):
|
75 |
+
global tokenizer, model, image_processor, context_len, loaded_model_name, my_generator
|
76 |
+
|
77 |
+
with open(TEXT_SAFETY_PATCHES[text_safety_patch_type], 'r') as file:
|
78 |
+
text_safety_patch = file.read().rstrip()
|
79 |
+
|
80 |
+
image_safety_patch = IMAGE_SAFETY_PATCHES[image_safety_patch_type]
|
81 |
+
if requested_model_name == "LLaVA":
|
82 |
+
|
83 |
+
if requested_model_name == loaded_model_name:
|
84 |
+
|
85 |
+
print(f"{requested_model_name} model already loaded.")
|
86 |
+
|
87 |
+
else:
|
88 |
+
print(f"Loading {requested_model_name} model ... ")
|
89 |
+
|
90 |
+
threading.Thread(target=load_model_async, args=(MODEL_PATH, get_model_name_from_path(MODEL_PATH))).start()
|
91 |
+
my_generator = generator.Generator(model=model, tokenizer=tokenizer)
|
92 |
+
|
93 |
+
# load a randomly-sampled unconstrained attack image as Image object
|
94 |
+
if isinstance(image, str):
|
95 |
+
image = load_image(image)
|
96 |
+
|
97 |
+
# transform the image using the visual encoder (CLIP) of LLaVA 1.5; the processed image size would be PyTorch tensor whose shape is (336,336).
|
98 |
+
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].cuda()
|
99 |
+
|
100 |
+
if image_safety_patch != None:
|
101 |
+
# make the image pixel values between (0,1)
|
102 |
+
image = normalize(image)
|
103 |
+
# load the safety patch tensor whose values are (0,1)
|
104 |
+
safety_patch = torch.load(image_safety_patch).cuda()
|
105 |
+
# apply the safety patch to the input image, clamp it between (0,1) and denormalize it to the original pixel values
|
106 |
+
safe_image = denormalize((image + safety_patch).clamp(0, 1))
|
107 |
+
# make sure the image value is between (0,1)
|
108 |
+
print(torch.min(image), torch.max(image), torch.min(safe_image), torch.max(safe_image))
|
109 |
+
|
110 |
+
else:
|
111 |
+
safe_image = image
|
112 |
+
|
113 |
+
model.eval()
|
114 |
+
|
115 |
+
user_message_unprotected = user_message
|
116 |
+
if text_safety_patch != None:
|
117 |
+
if text_safety_patch_type == "optimal":
|
118 |
+
# use the below for optimal text safety patch
|
119 |
+
user_message = text_safety_patch + '\n' + user_message
|
120 |
+
|
121 |
+
elif text_safety_patch_type == "heuristic":
|
122 |
+
# use the below for heuristic text safety patch
|
123 |
+
user_message += '\n' + text_safety_patch
|
124 |
+
else:
|
125 |
+
raise ValueError(f"Invalid safety patch type: {user_message}")
|
126 |
+
|
127 |
+
text_prompt_template_unprotected = prompt_wrapper.prepare_text_prompt(text_prompt % user_message_unprotected)
|
128 |
+
prompt_unprotected = prompt_wrapper.Prompt(model, tokenizer, text_prompts=text_prompt_template_unprotected,
|
129 |
+
device=model.device)
|
130 |
+
|
131 |
+
text_prompt_template = prompt_wrapper.prepare_text_prompt(text_prompt % user_message)
|
132 |
+
prompt = prompt_wrapper.Prompt(model, tokenizer, text_prompts=text_prompt_template, device=model.device)
|
133 |
+
|
134 |
+
response_unprotected = my_generator.generate(prompt_unprotected, image).replace("[INST]", "").replace("[/INST]",
|
135 |
+
"").replace(
|
136 |
+
"[SYS]", "").replace("[/SYS/]", "").strip()
|
137 |
+
|
138 |
+
response = my_generator.generate(prompt, safe_image).replace("[INST]", "").replace("[/INST]", "").replace(
|
139 |
+
"[SYS]", "").replace("[/SYS/]", "").strip()
|
140 |
+
|
141 |
+
if text_safety_patch != None:
|
142 |
+
response = response.replace(text_safety_patch, "")
|
143 |
+
|
144 |
+
response_unprotected = response_unprotected.replace(text_safety_patch, "")
|
145 |
+
|
146 |
+
print(" -- [Unprotected] continuation: ---")
|
147 |
+
print(response_unprotected)
|
148 |
+
print(" -- [Protected] continuation: ---")
|
149 |
+
print(response)
|
150 |
+
|
151 |
+
out.append({'prompt': user_message, 'continuation': response})
|
152 |
+
out_unprotected.append({'prompt': user_message, 'continuation': response_unprotected})
|
153 |
+
|
154 |
+
return response, response_unprotected
|
155 |
+
|
156 |
+
|
157 |
+
def get_list_of_examples():
|
158 |
+
global rtp
|
159 |
+
examples = []
|
160 |
+
|
161 |
+
# Use the first 3 prompts for constrained attack
|
162 |
+
for i, prompt in enumerate(prompts[:3]):
|
163 |
+
image_num = np.random.randint(25) # Randomly select an image number
|
164 |
+
image_path = f'{CONSTRAINED_ATTACK_IMAGE_PATH}{image_num}.bmp'
|
165 |
+
|
166 |
+
examples.append(
|
167 |
+
[image_path, prompt]
|
168 |
+
)
|
169 |
+
|
170 |
+
# Use the 3-6th prompts for unconstrained attack
|
171 |
+
for i, prompt in enumerate(prompts[3:6]):
|
172 |
+
image_num = np.random.randint(25) # Randomly select an image number
|
173 |
+
image_path = f'{UNCONSTRAINED_ATTACK_IMAGE_PATH}{image_num}.bmp'
|
174 |
+
|
175 |
+
examples.append(
|
176 |
+
[image_path, prompt]
|
177 |
+
)
|
178 |
+
|
179 |
+
return examples
|
180 |
+
|
181 |
+
|
182 |
+
css = """#col-container {max-width: 90%; margin-left: auto; margin-right: auto; display: flex; flex-direction: column;}
|
183 |
+
#header {text-align: center;}
|
184 |
+
#col-chatbox {flex: 1; max-height: min(750px, 100%);}
|
185 |
+
#label {font-size: 2em; padding: 0.5em; margin: 0;}
|
186 |
+
.message {font-size: 1.2em;}
|
187 |
+
.message-wrap {max-height: min(700px, 100vh);}
|
188 |
+
"""
|
189 |
+
|
190 |
+
|
191 |
+
def get_empty_state():
|
192 |
+
# TODO: Not sure what this means
|
193 |
+
return gr.State({"arena": None})
|
194 |
+
|
195 |
+
|
196 |
+
examples = get_list_of_examples()
|
197 |
+
|
198 |
+
|
199 |
+
# Define a function to update inputs based on selected example
|
200 |
+
def update_inputs(example_id):
|
201 |
+
selected_example = examples[int(example_id)]
|
202 |
+
return selected_example['image_path'], selected_example['text']
|
203 |
+
|
204 |
+
|
205 |
+
model_selector, image_patch_selector, text_patch_selector = None, None, None
|
206 |
+
|
207 |
+
|
208 |
+
def process_text_and_image(image_path: str, user_message: str):
|
209 |
+
global model_selector, image_patch_selector, text_patch_selector
|
210 |
+
print(f"User Message: {user_message}")
|
211 |
+
# print(f"Text Safety Patch: {safety_patch}")
|
212 |
+
print(f"Image Path: {image_path}")
|
213 |
+
print(model_selector.value)
|
214 |
+
|
215 |
+
# generate_answer(user_message, image_path, "LLaVA", "heuristic", "default")
|
216 |
+
response, response_unprotected = generate_answer(image_path, user_message, model_selector.value, image_patch_selector.value,
|
217 |
+
text_patch_selector.value)
|
218 |
+
|
219 |
+
return response, response_unprotected
|
220 |
+
|
221 |
+
|
222 |
+
with gr.Blocks(css=css) as demo:
|
223 |
+
state = get_empty_state()
|
224 |
+
all_components = []
|
225 |
+
|
226 |
+
with gr.Column(elem_id="col-container"):
|
227 |
+
gr.Markdown(
|
228 |
+
"""# 🦙LLaVAGuard🔥<br>
|
229 |
+
Safeguarding your Multimodal LLM
|
230 |
+
**[Project Homepage](#)**""",
|
231 |
+
elem_id="header",
|
232 |
+
)
|
233 |
+
|
234 |
+
# example_selector = gr.Dropdown(choices=[f"Example {i}" for i, e in enumerate(examples)],
|
235 |
+
# label="Select an Example")
|
236 |
+
|
237 |
+
with gr.Row():
|
238 |
+
model_selector = gr.Dropdown(choices=["LLaVA"], label="Model", info="Select Model", value="LLaVA")
|
239 |
+
image_patch_selector = gr.Dropdown(choices=["default"], label="Image Patch", info="Select Image Safety "
|
240 |
+
"Patch", value="default")
|
241 |
+
text_patch_selector = gr.Dropdown(choices=["heuristic", "optimized"], label="Text Patch", info="Select "
|
242 |
+
"Text "
|
243 |
+
"Safety "
|
244 |
+
"Patch",
|
245 |
+
value="heuristic")
|
246 |
+
|
247 |
+
image_and_text_uploader = gr.Interface(
|
248 |
+
fn=process_text_and_image,
|
249 |
+
inputs=[gr.Image(type="pil", label="Upload your image", interactive=True),
|
250 |
+
|
251 |
+
gr.Textbox(placeholder="Input a question", label="Your Question"),
|
252 |
+
],
|
253 |
+
examples=examples,
|
254 |
+
outputs=[
|
255 |
+
gr.Textbox(label="With Safety Patches"),
|
256 |
+
gr.Textbox(label="NO Safety Patches")
|
257 |
+
])
|
258 |
+
|
259 |
+
|
260 |
+
# Launch the demo
|
261 |
+
demo.launch()
|