Spaces:
Sleeping
Sleeping
Add application file
Browse files- Dockerfile +16 -0
- app.py +21 -0
- requirements.txt +9 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
|
8 |
+
WORKDIR /app
|
9 |
+
|
10 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
11 |
+
|
12 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
13 |
+
|
14 |
+
COPY --chown=user . /app
|
15 |
+
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, Form, UploadFile
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
model_id = "vikhyatk/moondream2"
|
9 |
+
revision = "2024-05-20"
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_id, trust_remote_code=True, revision=revision
|
12 |
+
)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
14 |
+
|
15 |
+
@app.post("/analyze-image/")
|
16 |
+
async def analyze_image(file: UploadFile = File(...), question: str = Form(...)):
|
17 |
+
contents = await file.read()
|
18 |
+
image = Image.open(io.BytesIO(contents))
|
19 |
+
enc_image = model.encode_image(image)
|
20 |
+
answer = model.answer_question(enc_image, question, tokenizer)
|
21 |
+
return {"answer": answer}
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
datasets
|
4 |
+
transformers
|
5 |
+
accelerate
|
6 |
+
evaluate
|
7 |
+
bitsandbytes
|
8 |
+
accelerate
|
9 |
+
einops
|