Afrinetwork7 commited on
Commit
0867e96
1 Parent(s): afe3b5d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -51
app.py CHANGED
@@ -1,68 +1,66 @@
1
- import gradio as gr
2
- import spaces
 
 
3
  from transformers import AutoModelForCausalLM, AutoProcessor
4
  import torch
5
  from PIL import Image
6
  import subprocess
 
 
7
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
8
 
9
- models = {
10
- "microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
11
 
 
 
 
 
 
 
 
12
  }
13
 
14
  processors = {
15
- "microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
 
 
 
16
  }
17
 
18
- DESCRIPTION = "# [Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"
19
-
20
- kwargs = {}
21
- kwargs['torch_dtype'] = torch.bfloat16
22
-
23
- user_prompt = '<|user|>\n'
24
- assistant_prompt = '<|assistant|>\n'
25
- prompt_suffix = "<|end|>\n"
26
-
27
- @spaces.GPU
28
- def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
29
- model = models[model_id]
30
- processor = processors[model_id]
31
-
32
- prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
33
- image = Image.fromarray(image).convert("RGB")
34
 
35
- inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
36
- generate_ids = model.generate(**inputs,
37
- max_new_tokens=1000,
38
- eos_token_id=processor.tokenizer.eos_token_id,
39
- )
40
- generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
41
- response = processor.batch_decode(generate_ids,
42
- skip_special_tokens=True,
43
- clean_up_tokenization_spaces=False)[0]
44
- return response
45
 
46
- css = """
47
- #output {
48
- height: 500px;
49
- overflow: auto;
50
- border: 1px solid #ccc;
51
- }
52
- """
53
 
54
- with gr.Blocks(css=css) as demo:
55
- gr.Markdown(DESCRIPTION)
56
- with gr.Tab(label="Phi-3.5 Input"):
57
- with gr.Row():
58
- with gr.Column():
59
- input_img = gr.Image(label="Input Picture")
60
- model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
61
- text_input = gr.Textbox(label="Question")
62
- submit_btn = gr.Button(value="Submit")
63
- with gr.Column():
64
- output_text = gr.Textbox(label="Output Text")
65
 
66
- submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
 
 
 
 
 
 
 
 
 
 
 
67
 
68
- demo.launch(debug=True)
 
 
 
1
+ import base64
2
+ from io import BytesIO
3
+ from fastapi import FastAPI, HTTPException
4
+ from pydantic import BaseModel
5
  from transformers import AutoModelForCausalLM, AutoProcessor
6
  import torch
7
  from PIL import Image
8
  import subprocess
9
+
10
+ # Install flash-attn
11
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
12
 
13
+ app = FastAPI()
 
14
 
15
+ models = {
16
+ "microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained(
17
+ "microsoft/Phi-3.5-vision-instruct",
18
+ trust_remote_code=True,
19
+ torch_dtype="auto",
20
+ attn_implementation="flash_attention_2"
21
+ ).cuda().eval()
22
  }
23
 
24
  processors = {
25
+ "microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained(
26
+ "microsoft/Phi-3.5-vision-instruct",
27
+ trust_remote_code=True
28
+ )
29
  }
30
 
31
+ class InputData(BaseModel):
32
+ image: str
33
+ text_input: str
34
+ model_id: str = "microsoft/Phi-3.5-vision-instruct"
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ @app.post("/run_example")
37
+ async def run_example(input_data: InputData):
38
+ try:
39
+ model = models[input_data.model_id]
40
+ processor = processors[input_data.model_id]
 
 
 
 
 
41
 
42
+ # Decode base64 image
43
+ image_data = base64.b64decode(input_data.image)
44
+ image = Image.open(BytesIO(image_data)).convert("RGB")
 
 
 
 
45
 
46
+ user_prompt = '<|user|>\n'
47
+ assistant_prompt = '<|assistant|>\n'
48
+ prompt_suffix = "<|end|>\n"
49
+ prompt = f"{user_prompt}<|image_1|>\n{input_data.text_input}{prompt_suffix}{assistant_prompt}"
 
 
 
 
 
 
 
50
 
51
+ inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
52
+ generate_ids = model.generate(
53
+ **inputs,
54
+ max_new_tokens=1000,
55
+ eos_token_id=processor.tokenizer.eos_token_id,
56
+ )
57
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
58
+ response = processor.batch_decode(
59
+ generate_ids,
60
+ skip_special_tokens=True,
61
+ clean_up_tokenization_spaces=False
62
+ )[0]
63
 
64
+ return {"response": response}
65
+ except Exception as e:
66
+ raise HTTPException(status_code=500, detail=str(e))