Spaces:
Sleeping
Sleeping
File size: 976 Bytes
601256e 88301ec 601256e 88301ec 601256e 88301ec 601256e 88301ec 601256e 88301ec 601256e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Set up the Hugging Face API token
HF_token = "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"
# Load the tokenizer and model
model_name = "Qwen/Qwen1.5-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HF_token)
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=HF_token)
# Function to generate article
def generate_article(topic):
inputs = tokenizer(f"Generate article for the NY times tweet {topic}", return_tensors="pt")
outputs = model.generate(inputs['input_ids'], max_new_tokens=512, temperature=0.5)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Streamlit app interface
st.title("Article Generator")
topic = st.text_input("Enter a topic:")
if st.button("Generate"):
if topic:
article = generate_article(topic)
st.write(article)
else:
st.write("Please enter a topic.")
|