Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,35 +3,28 @@ import os
|
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
from diffusers import (
|
6 |
-
|
7 |
StableDiffusionControlNetImg2ImgPipeline,
|
8 |
ControlNetModel,
|
9 |
-
DDIMScheduler,
|
10 |
-
DPMSolverMultistepScheduler,
|
11 |
-
DEISMultistepScheduler,
|
12 |
-
HeunDiscreteScheduler,
|
13 |
-
EulerDiscreteScheduler,
|
14 |
)
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
# Load the pipeline in float16 precision
|
22 |
-
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
23 |
"SG161222/Realistic_Vision_V2.0",
|
24 |
controlnet=controlnet,
|
25 |
safety_checker=None,
|
26 |
torch_dtype=torch.float16,
|
27 |
).to("cuda")
|
28 |
-
pipe.enable_xformers_memory_efficient_attention()
|
29 |
|
|
|
30 |
SAMPLER_MAP = {
|
31 |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
32 |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
33 |
}
|
34 |
|
|
|
35 |
def inference(
|
36 |
control_image: Image.Image,
|
37 |
prompt: str,
|
@@ -45,16 +38,15 @@ def inference(
|
|
45 |
if prompt is None or prompt == "":
|
46 |
raise gr.Error("Prompt is required")
|
47 |
|
48 |
-
# Generate
|
49 |
-
init_image =
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
control_image = control_image.resize((512, 512))
|
54 |
-
|
55 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
56 |
-
|
57 |
-
out =
|
58 |
prompt=prompt,
|
59 |
negative_prompt=negative_prompt,
|
60 |
image=init_image,
|
|
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
from diffusers import (
|
6 |
+
DiffusionPipeline,
|
7 |
StableDiffusionControlNetImg2ImgPipeline,
|
8 |
ControlNetModel,
|
|
|
|
|
|
|
|
|
|
|
9 |
)
|
10 |
|
11 |
+
# Initialize both pipelines
|
12 |
+
init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V2.0", torch_dtype=torch.float16).to("cuda")
|
13 |
+
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
|
14 |
+
main_pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
|
|
|
|
|
|
15 |
"SG161222/Realistic_Vision_V2.0",
|
16 |
controlnet=controlnet,
|
17 |
safety_checker=None,
|
18 |
torch_dtype=torch.float16,
|
19 |
).to("cuda")
|
|
|
20 |
|
21 |
+
# Sampler map
|
22 |
SAMPLER_MAP = {
|
23 |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
24 |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
25 |
}
|
26 |
|
27 |
+
# Inference function
|
28 |
def inference(
|
29 |
control_image: Image.Image,
|
30 |
prompt: str,
|
|
|
38 |
if prompt is None or prompt == "":
|
39 |
raise gr.Error("Prompt is required")
|
40 |
|
41 |
+
# Generate the initial image
|
42 |
+
init_image = init_pipe(prompt).images[0]
|
43 |
+
|
44 |
+
# Rest of your existing code
|
|
|
45 |
control_image = control_image.resize((512, 512))
|
46 |
+
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
47 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
48 |
+
|
49 |
+
out = main_pipe(
|
50 |
prompt=prompt,
|
51 |
negative_prompt=negative_prompt,
|
52 |
image=init_image,
|