Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,35 +2,85 @@ import gradio as gr
|
|
2 |
import requests
|
3 |
from PIL import Image
|
4 |
import io
|
5 |
-
from typing import Any
|
6 |
import os
|
7 |
|
8 |
class Client:
|
9 |
def __init__(self, server_url: str):
|
10 |
self.server_url = server_url
|
11 |
|
12 |
-
def send_request(self, model_name: str, text: str) -> Any:
|
13 |
-
response = requests.post(self.server_url, json={"model_name": model_name, "text": text})
|
14 |
if response.status_code == 200:
|
15 |
-
|
|
|
|
|
16 |
img = Image.open(io.BytesIO(img_data))
|
17 |
-
return img
|
18 |
else:
|
19 |
-
return "Error, please retry"
|
20 |
|
21 |
client = Client(f"http://{os.environ['SERVER']}/predict")
|
22 |
|
23 |
-
def get_layerwise_nonlinearity(model_name: str, text: str) -> Any:
|
24 |
-
return client.send_request(model_name, text)
|
25 |
|
26 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
with gr.Column():
|
28 |
-
|
29 |
-
text_message = gr.Textbox(label="Enter your request:")
|
30 |
submit = gr.Button("Submit")
|
31 |
-
box_for_plot = gr.Image(label="
|
|
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
if __name__ == "__main__":
|
36 |
demo.launch(share=True, server_port=7860, server_name="0.0.0.0")
|
|
|
2 |
import requests
|
3 |
from PIL import Image
|
4 |
import io
|
5 |
+
from typing import Any, Tuple
|
6 |
import os
|
7 |
|
8 |
class Client:
|
9 |
def __init__(self, server_url: str):
|
10 |
self.server_url = server_url
|
11 |
|
12 |
+
def send_request(self, task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any, str]:
|
13 |
+
response = requests.post(self.server_url, json={"task_name": task_name, "model_name": model_name, "text": text, "normalization_type": normalization_type}, timeout=10)
|
14 |
if response.status_code == 200:
|
15 |
+
response_data = response.json()
|
16 |
+
img_data = bytes.fromhex(response_data["image"])
|
17 |
+
log_info = response_data["log"]
|
18 |
img = Image.open(io.BytesIO(img_data))
|
19 |
+
return img, log_info
|
20 |
else:
|
21 |
+
return "Error, please retry", "Error: Could not get response from server"
|
22 |
|
23 |
client = Client(f"http://{os.environ['SERVER']}/predict")
|
24 |
|
25 |
+
def get_layerwise_nonlinearity(task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any, str]:
|
26 |
+
return client.send_request(task_name, model_name, text, normalization_type)
|
27 |
|
28 |
with gr.Blocks() as demo:
|
29 |
+
with gr.Row():
|
30 |
+
model_selector = gr.Dropdown(
|
31 |
+
choices=[
|
32 |
+
"facebook/opt-1.3b",
|
33 |
+
"facebook/opt-2.7b",
|
34 |
+
"microsoft/Phi-3-mini-128k-instruct"
|
35 |
+
],
|
36 |
+
value="facebook/opt-1.3b",
|
37 |
+
label="Select Model"
|
38 |
+
)
|
39 |
+
task_selector = gr.Dropdown(
|
40 |
+
choices=[
|
41 |
+
"Layer wise non-linearity (with first layer)",
|
42 |
+
"Next-token prediction from intermediate representations",
|
43 |
+
"Contextualization mesurment",
|
44 |
+
"Layerwise predictions and losses",
|
45 |
+
"Tokenwise loss without i-th layer"
|
46 |
+
],
|
47 |
+
value="Layer wise non-linearity (with first layer)",
|
48 |
+
label="Select Mode"
|
49 |
+
)
|
50 |
+
normalization_selector = gr.Dropdown(
|
51 |
+
choices=["global", "token-wise"], #, "sentence-wise"],
|
52 |
+
value="token-wise",
|
53 |
+
label="Select Normalization"
|
54 |
+
)
|
55 |
with gr.Column():
|
56 |
+
text_message = gr.Textbox(label="Enter your request:", value="I love to live my life")
|
|
|
57 |
submit = gr.Button("Submit")
|
58 |
+
box_for_plot = gr.Image(label="Visualization", type="pil")
|
59 |
+
log_output = gr.Textbox(label="Log Output", lines=10, interactive=False, value="")
|
60 |
|
61 |
+
def update_output(task_name: str, model_name: str, text: str, normalization_type: str, existing_log: str) -> Tuple[Any, str]:
|
62 |
+
img, new_log = get_layerwise_nonlinearity(task_name, model_name, text, normalization_type)
|
63 |
+
combined_log = existing_log + "---\n" + new_log + "\n"
|
64 |
+
return img, combined_log
|
65 |
+
|
66 |
+
def set_default(task_name: str) -> str:
|
67 |
+
if task_name == "Layer wise non-linearity (with first layer)":
|
68 |
+
return "token-wise"
|
69 |
+
if task_name == "Next-token prediction from intermediate representations":
|
70 |
+
return "token-wise"
|
71 |
+
if task_name == "Contextualization mesurment":
|
72 |
+
return "global"
|
73 |
+
if task_name == "Layerwise predictions and losses":
|
74 |
+
return "global"
|
75 |
+
if task_name == "Tokenwise loss without i-th layer":
|
76 |
+
return "token-wise"
|
77 |
+
|
78 |
+
task_selector.select(set_default, [task_selector], [normalization_selector])
|
79 |
+
submit.click(
|
80 |
+
fn=update_output,
|
81 |
+
inputs=[task_selector, model_selector, text_message, normalization_selector, log_output],
|
82 |
+
outputs=[box_for_plot, log_output]
|
83 |
+
)
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
demo.launch(share=True, server_port=7860, server_name="0.0.0.0")
|