Spaces:
Sleeping
Sleeping
exchange the checkpoint trained on Laion-OCR 10M.
Browse files- .gitignore +3 -1
- config_cuda_ema.yaml +88 -0
- model.ckpt +0 -3
- model_wo_ema.ckpt +2 -2
- scripts/gradio_rendertext.py +0 -314
- transfer.py +1 -1
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
*.pyc
|
|
|
|
|
|
1 |
+
*.pyc
|
2 |
+
*__pycache__/*
|
3 |
+
*__pycache__
|
config_cuda_ema.yaml
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-6 #1.0e-5 #1.0e-4
|
3 |
+
target: cldm.cldm.ControlLDM
|
4 |
+
params:
|
5 |
+
linear_start: 0.00085
|
6 |
+
linear_end: 0.0120
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: "jpg"
|
11 |
+
cond_stage_key: "txt"
|
12 |
+
control_key: "hint"
|
13 |
+
image_size: 64
|
14 |
+
channels: 4
|
15 |
+
cond_stage_trainable: false
|
16 |
+
conditioning_key: crossattn
|
17 |
+
monitor: #val/loss_simple_ema
|
18 |
+
scale_factor: 0.18215
|
19 |
+
only_mid_control: False
|
20 |
+
sd_locked: True
|
21 |
+
use_ema: True #TODO: specify
|
22 |
+
|
23 |
+
control_stage_config:
|
24 |
+
target: cldm.cldm.ControlNet
|
25 |
+
params:
|
26 |
+
use_checkpoint: True
|
27 |
+
image_size: 32 # unused
|
28 |
+
in_channels: 4
|
29 |
+
hint_channels: 3
|
30 |
+
model_channels: 320
|
31 |
+
attention_resolutions: [ 4, 2, 1 ]
|
32 |
+
num_res_blocks: 2
|
33 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
34 |
+
num_head_channels: 64 # need to fix for flash-attn
|
35 |
+
use_spatial_transformer: True
|
36 |
+
use_linear_in_transformer: True
|
37 |
+
transformer_depth: 1
|
38 |
+
context_dim: 1024
|
39 |
+
legacy: False
|
40 |
+
|
41 |
+
unet_config:
|
42 |
+
target: cldm.cldm.ControlledUnetModel
|
43 |
+
params:
|
44 |
+
use_checkpoint: True
|
45 |
+
image_size: 32 # unused
|
46 |
+
in_channels: 4
|
47 |
+
out_channels: 4
|
48 |
+
model_channels: 320
|
49 |
+
attention_resolutions: [ 4, 2, 1 ]
|
50 |
+
num_res_blocks: 2
|
51 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
52 |
+
num_head_channels: 64 # need to fix for flash-attn
|
53 |
+
use_spatial_transformer: True
|
54 |
+
use_linear_in_transformer: True
|
55 |
+
transformer_depth: 1
|
56 |
+
context_dim: 1024
|
57 |
+
legacy: False
|
58 |
+
|
59 |
+
first_stage_config:
|
60 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
61 |
+
params:
|
62 |
+
embed_dim: 4
|
63 |
+
monitor: val/rec_loss
|
64 |
+
ddconfig:
|
65 |
+
#attn_type: "vanilla-xformers"
|
66 |
+
double_z: true
|
67 |
+
z_channels: 4
|
68 |
+
resolution: 256
|
69 |
+
in_channels: 3
|
70 |
+
out_ch: 3
|
71 |
+
ch: 128
|
72 |
+
ch_mult:
|
73 |
+
- 1
|
74 |
+
- 2
|
75 |
+
- 4
|
76 |
+
- 4
|
77 |
+
num_res_blocks: 2
|
78 |
+
attn_resolutions: []
|
79 |
+
dropout: 0.0
|
80 |
+
lossconfig:
|
81 |
+
target: torch.nn.Identity
|
82 |
+
|
83 |
+
cond_stage_config:
|
84 |
+
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
85 |
+
params:
|
86 |
+
freeze: True
|
87 |
+
layer: "penultimate"
|
88 |
+
# device: "cpu" #TODO: specify
|
model.ckpt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f5f82f4af7d69b0ffdff6bf3d1b8dc6b13bbf81e28ea0fbacbf68824d2c1f652
|
3 |
-
size 8129070351
|
|
|
|
|
|
|
|
model_wo_ema.ckpt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7ae9f29a41152a85bc5001811f80f701fb8b845b44526483497fdd6f4946e4b
|
3 |
+
size 6671914001
|
scripts/gradio_rendertext.py
DELETED
@@ -1,314 +0,0 @@
|
|
1 |
-
|
2 |
-
from cldm.model import load_state_dict
|
3 |
-
from cldm.ddim_hacked import DDIMSampler
|
4 |
-
from ldm.util import instantiate_from_config
|
5 |
-
import os
|
6 |
-
from omegaconf import OmegaConf
|
7 |
-
import argparse, os
|
8 |
-
from torchvision.transforms import ToTensor
|
9 |
-
from torch import autocast
|
10 |
-
from contextlib import nullcontext
|
11 |
-
from scripts.rendertext_tool import Render_Text, load_model_from_config
|
12 |
-
# def load_model_from_config(cfg, ckpt, verbose=False, not_use_ckpt=False):
|
13 |
-
# sd = load_state_dict(ckpt, location='cpu')
|
14 |
-
|
15 |
-
# if "model_ema.input_blocks10in_layers0weight" not in sd:
|
16 |
-
# cfg.model.params.use_ema = False
|
17 |
-
# model = instantiate_from_config(cfg.model)
|
18 |
-
|
19 |
-
# if not not_use_ckpt:
|
20 |
-
# m, u = model.load_state_dict(sd, strict=False)
|
21 |
-
# if len(m) > 0 and verbose:
|
22 |
-
# print("missing keys: {}".format(len(m)))
|
23 |
-
# print(m)
|
24 |
-
# if len(u) > 0 and verbose:
|
25 |
-
# print("unexpected keys: {}".format(len(u)))
|
26 |
-
# print(u)
|
27 |
-
|
28 |
-
# model.cuda()
|
29 |
-
# model.eval()
|
30 |
-
# return model
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
def parse_args():
|
36 |
-
parser = argparse.ArgumentParser()
|
37 |
-
parser.add_argument(
|
38 |
-
"--cfg",
|
39 |
-
type=str,
|
40 |
-
default="configs/stable-diffusion/textcaps_cldm_v20.yaml",
|
41 |
-
help="path to config which constructs model",
|
42 |
-
)
|
43 |
-
parser.add_argument(
|
44 |
-
"--ckpt",
|
45 |
-
type=str,
|
46 |
-
help="path to checkpoint of model",
|
47 |
-
)
|
48 |
-
parser.add_argument(
|
49 |
-
"--hint_range_m11",
|
50 |
-
action="store_true",
|
51 |
-
help="the range of the hint image ([-1, 1])",
|
52 |
-
)
|
53 |
-
parser.add_argument(
|
54 |
-
"--precision",
|
55 |
-
type=str,
|
56 |
-
help="evaluate at this precision",
|
57 |
-
choices=["full", "autocast"],
|
58 |
-
default="full" #"autocast"
|
59 |
-
)
|
60 |
-
parser.add_argument(
|
61 |
-
"--not_use_ckpt",
|
62 |
-
action="store_true",
|
63 |
-
help="not to use the ckpt",
|
64 |
-
)
|
65 |
-
parser.add_argument(
|
66 |
-
"--build_demo",
|
67 |
-
action="store_true",
|
68 |
-
help="whether to build the demo",
|
69 |
-
)
|
70 |
-
parser.add_argument(
|
71 |
-
"--sep_prompt",
|
72 |
-
action="store_true",
|
73 |
-
help="whether to sep the prompt",
|
74 |
-
)
|
75 |
-
parser.add_argument(
|
76 |
-
"--spell_prompt_type",
|
77 |
-
type=int,
|
78 |
-
default=1,
|
79 |
-
help="1: A sign with the word 'xxx' written on it; 2: A sign that says 'xxx'",
|
80 |
-
)
|
81 |
-
parser.add_argument(
|
82 |
-
"--max_num_prompts",
|
83 |
-
type=int,
|
84 |
-
default=None,
|
85 |
-
help="max num of the used prompts",
|
86 |
-
)
|
87 |
-
parser.add_argument(
|
88 |
-
"--grams",
|
89 |
-
type=int,
|
90 |
-
default=1,
|
91 |
-
help="How many grams (words or symbols) to form the to-be-rendered text (used for DrawSpelling Benchmark)",
|
92 |
-
)
|
93 |
-
parser.add_argument(
|
94 |
-
"--num_samples",
|
95 |
-
type=int,
|
96 |
-
default=1,
|
97 |
-
help="how many samples to produce for each given prompt. A.k.a batch size",
|
98 |
-
)
|
99 |
-
parser.add_argument(
|
100 |
-
"--from-file",
|
101 |
-
type=str,
|
102 |
-
help="if specified, load prompts from this file, separated by newlines",
|
103 |
-
)
|
104 |
-
parser.add_argument(
|
105 |
-
"--prompt",
|
106 |
-
type=str,
|
107 |
-
nargs="?",
|
108 |
-
default="a sign that says 'Stable Diffusion'",
|
109 |
-
help="the prompt"
|
110 |
-
)
|
111 |
-
parser.add_argument(
|
112 |
-
"--rendered_txt",
|
113 |
-
type=str,
|
114 |
-
nargs="?",
|
115 |
-
default="Stable Diffusion",
|
116 |
-
help="the text to render"
|
117 |
-
)
|
118 |
-
parser.add_argument(
|
119 |
-
"--uncond_glycon_img",
|
120 |
-
action="store_true",
|
121 |
-
help="whether to set glyph embedding as None while using unconditional conditioning",
|
122 |
-
)
|
123 |
-
parser.add_argument(
|
124 |
-
"--deepspeed_ckpt",
|
125 |
-
action="store_true",
|
126 |
-
help="whether to use deepspeed while training",
|
127 |
-
)
|
128 |
-
parser.add_argument(
|
129 |
-
"--glyph_img_size",
|
130 |
-
type=int,
|
131 |
-
default=256,
|
132 |
-
help="the size of input images of the glyph image encoder",
|
133 |
-
)
|
134 |
-
parser.add_argument(
|
135 |
-
"--uncond_glyph_image_type",
|
136 |
-
type=str,
|
137 |
-
default="white",
|
138 |
-
help="the type of rendered glyph images as unconditional conditions while using classifier-free guidance"
|
139 |
-
)
|
140 |
-
parser.add_argument(
|
141 |
-
"--remove_txt_in_prompt",
|
142 |
-
action="store_true",
|
143 |
-
help="whether to remove text in the prompt",
|
144 |
-
)
|
145 |
-
parser.add_argument(
|
146 |
-
"--replace_token",
|
147 |
-
type=str,
|
148 |
-
default="",
|
149 |
-
help="the token used to replace"
|
150 |
-
)
|
151 |
-
return parser
|
152 |
-
|
153 |
-
if not os.path.basename(os.getcwd()) == "stablediffusion":
|
154 |
-
os.chdir(os.path.join(os.getcwd(), "stablediffusion"))
|
155 |
-
print(os.getcwd())
|
156 |
-
parser = parse_args()
|
157 |
-
opt = parser.parse_args()
|
158 |
-
|
159 |
-
if opt.deepspeed_ckpt:
|
160 |
-
assert os.path.isdir(opt.ckpt)
|
161 |
-
opt.ckpt = os.path.join(opt.ckpt, "checkpoint", "mp_rank_00_model_states.pt")
|
162 |
-
assert os.path.exists(opt.ckpt)
|
163 |
-
|
164 |
-
cfg = OmegaConf.load(f"{opt.cfg}")
|
165 |
-
model = load_model_from_config(cfg, f"{opt.ckpt}", verbose=True, not_use_ckpt=opt.not_use_ckpt)
|
166 |
-
hint_range_m11 = opt.hint_range_m11
|
167 |
-
sep_prompt = opt.sep_prompt
|
168 |
-
|
169 |
-
ddim_sampler = DDIMSampler(model)
|
170 |
-
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
171 |
-
trans = ToTensor()
|
172 |
-
render_tool = Render_Text(
|
173 |
-
model, precision_scope,
|
174 |
-
trans,
|
175 |
-
hint_range_m11,
|
176 |
-
sep_prompt,
|
177 |
-
uncond_glycon_img= cfg.uncond_glycon_img if hasattr(cfg, "uncond_glycon_img") else opt.uncond_glycon_img,
|
178 |
-
glyph_control_proc_config= cfg.glyph_control_proc_config if hasattr(cfg, "glyph_control_proc_config") else None,
|
179 |
-
glyph_img_size = opt.glyph_img_size,
|
180 |
-
uncond_glyph_image_type = cfg.uncond_glyph_image_type if hasattr(cfg, "uncond_glyph_image_type") else opt.uncond_glyph_image_type,
|
181 |
-
remove_txt_in_prompt = cfg.remove_txt_in_prompt if hasattr(cfg, "remove_txt_in_prompt") else opt.remove_txt_in_prompt,
|
182 |
-
replace_token = cfg.replace_token if hasattr(cfg, "replace_token") else opt.replace_token,
|
183 |
-
)
|
184 |
-
|
185 |
-
|
186 |
-
if opt.build_demo:
|
187 |
-
import gradio as gr
|
188 |
-
block = gr.Blocks().queue()
|
189 |
-
with block:
|
190 |
-
with gr.Row():
|
191 |
-
gr.Markdown("## Control Stable Diffusion with Glyph Images")
|
192 |
-
with gr.Row():
|
193 |
-
with gr.Column():
|
194 |
-
# input_image = gr.Image(source='upload', type="numpy")
|
195 |
-
rendered_txt = gr.Textbox(label="rendered_txt")
|
196 |
-
prompt = gr.Textbox(label="Prompt")
|
197 |
-
if sep_prompt:
|
198 |
-
prompt_2 = gr.Textbox(label="Prompt_ControlNet")
|
199 |
-
else:
|
200 |
-
prompt_2 = gr.Number(value = 0, visible = False) #None #""
|
201 |
-
run_button = gr.Button(label="Run")
|
202 |
-
with gr.Accordion("Advanced options", open=False):
|
203 |
-
width = gr.Slider(label="bbox_width", minimum=0., maximum=1, value=0.3, step=0.01)
|
204 |
-
# height = gr.Slider(label="bbox_height", minimum=0., maximum=1, value=0.2, step=0.01)
|
205 |
-
ratio = gr.Slider(label="bbox_width_height_ratio", minimum=0., maximum=5, value=0., step=0.02)
|
206 |
-
top_left_x = gr.Slider(label="bbox_top_left_x", minimum=0., maximum=1, value=0.5, step=0.01)
|
207 |
-
top_left_y = gr.Slider(label="bbox_top_left_y", minimum=0., maximum=1, value=0.5, step=0.01)
|
208 |
-
yaw = gr.Slider(label="bbox_yaw", minimum=-180, maximum=180, value=0, step=5)
|
209 |
-
num_rows = gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1)
|
210 |
-
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
211 |
-
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
|
212 |
-
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
213 |
-
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
214 |
-
# low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
|
215 |
-
# high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
|
216 |
-
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
217 |
-
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
218 |
-
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
219 |
-
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
220 |
-
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
221 |
-
n_prompt = gr.Textbox(label="Negative Prompt",
|
222 |
-
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
223 |
-
with gr.Column():
|
224 |
-
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
|
225 |
-
ips = [
|
226 |
-
rendered_txt, prompt,
|
227 |
-
width, ratio, # height,
|
228 |
-
top_left_x, top_left_y, yaw, num_rows,
|
229 |
-
a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta,
|
230 |
-
prompt_2
|
231 |
-
]
|
232 |
-
run_button.click(fn=render_tool.process, inputs=ips, outputs=[result_gallery])
|
233 |
-
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
234 |
-
|
235 |
-
|
236 |
-
block.launch(server_name='0.0.0.0', share=True)
|
237 |
-
else:
|
238 |
-
import easyocr
|
239 |
-
reader = easyocr.Reader(['en'])
|
240 |
-
# num_samples = 1
|
241 |
-
# rendered_txt = "happy"
|
242 |
-
# prompt = "A sign that says 'happy'"
|
243 |
-
|
244 |
-
num_samples = opt.num_samples
|
245 |
-
print("the num of samples is {}".format(num_samples))
|
246 |
-
if not opt.from_file:
|
247 |
-
prompts = [opt.prompt]
|
248 |
-
data = [opt.rendered_txt]
|
249 |
-
print("the prompt is {}".format(prompts))
|
250 |
-
print("the rendered_txt is {}".format(data))
|
251 |
-
assert prompts is not None
|
252 |
-
else:
|
253 |
-
print(f"reading prompts from {opt.from_file}")
|
254 |
-
with open(opt.from_file, "r") as f:
|
255 |
-
data = f.read().splitlines()
|
256 |
-
if "gram" in os.path.basename(opt.from_file):
|
257 |
-
data = [item.split("\t")[0] for item in data]
|
258 |
-
if opt.grams > 1:
|
259 |
-
data = [" ".join(data[i:i + opt.grams]) for i in range(0, len(data), opt.grams)]
|
260 |
-
if "DrawText_Spelling" in os.path.basename(opt.from_file) or "gram" in os.path.basename(opt.from_file):
|
261 |
-
if opt.spell_prompt_type == 1:
|
262 |
-
prompts = ['A sign with the word "{}" written on it'.format(line.strip()) for line in data]
|
263 |
-
elif opt.spell_prompt_type == 2:
|
264 |
-
prompts = ["A sign that says '{}'".format(line.strip()) for line in data]
|
265 |
-
elif opt.spell_prompt_type == 20:
|
266 |
-
prompts = ['A sign that says "{}"'.format(line.strip()) for line in data]
|
267 |
-
elif opt.spell_prompt_type == 3:
|
268 |
-
prompts = ["A whiteboard that says '{}'".format(line.strip()) for line in data]
|
269 |
-
elif opt.spell_prompt_type == 30:
|
270 |
-
prompts = ['A whiteboard that says "{}"'.format(line.strip()) for line in data]
|
271 |
-
else:
|
272 |
-
print("Only five types of prompt templates are supported currently")
|
273 |
-
raise ValueError
|
274 |
-
# if opt.verbose_all_prompts:
|
275 |
-
# show_num = opt.max_num_prompts if (opt.max_num_prompts is not None and opt.max_num_prompts >0) else 10
|
276 |
-
# for i in range(show_num):
|
277 |
-
# print("embed the word into the prompt template for {} Benchmark: {}".format(
|
278 |
-
# os.path.basename(opt.from_file), data[i])
|
279 |
-
# )
|
280 |
-
# else:
|
281 |
-
# print("embed the word into the prompt template for {} Benchmark: e.g., {}".format(
|
282 |
-
# os.path.basename(opt.from_file), data[0])
|
283 |
-
# )
|
284 |
-
if opt.max_num_prompts is not None and opt.max_num_prompts >0:
|
285 |
-
print("only use {} prompts to test the model".format(opt.max_num_prompts))
|
286 |
-
data = data[:opt.max_num_prompts]
|
287 |
-
prompts = prompts[:opt.max_num_prompts]
|
288 |
-
|
289 |
-
width, ratio, top_left_x, top_left_y, yaw, num_rows = 0.3, 0, 0.5, 0.5, 0, 1
|
290 |
-
image_resolution = 512
|
291 |
-
strength = 1
|
292 |
-
guess_mode = False
|
293 |
-
ddim_steps = 20
|
294 |
-
scale = 9.0
|
295 |
-
seed = 1945923867
|
296 |
-
eta = 0
|
297 |
-
a_prompt = 'best quality, extremely detailed'
|
298 |
-
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
299 |
-
|
300 |
-
all_results_list = []
|
301 |
-
for i in range(len(data)):
|
302 |
-
ips = (
|
303 |
-
data[i], prompts[i],
|
304 |
-
width, ratio, top_left_x, top_left_y, yaw, num_rows,
|
305 |
-
a_prompt, n_prompt,
|
306 |
-
num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta
|
307 |
-
)
|
308 |
-
all_results = render_tool.process(*ips) #process(*ips)
|
309 |
-
all_results_list.extend(all_results[1:] if data[i] != "" else all_results)
|
310 |
-
all_ocr_info = []
|
311 |
-
for image_array in all_results_list:
|
312 |
-
ocr_result = reader.readtext(image_array)
|
313 |
-
all_ocr_info.append(ocr_result)
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
transfer.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from omegaconf import OmegaConf
|
2 |
from scripts.rendertext_tool import Render_Text, load_model_from_config
|
3 |
import torch
|
4 |
-
cfg = OmegaConf.load("
|
5 |
model = load_model_from_config(cfg, "model_states.pt", verbose=True)
|
6 |
|
7 |
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
|
1 |
from omegaconf import OmegaConf
|
2 |
from scripts.rendertext_tool import Render_Text, load_model_from_config
|
3 |
import torch
|
4 |
+
cfg = OmegaConf.load("config_cuda_ema.yaml")
|
5 |
model = load_model_from_config(cfg, "model_states.pt", verbose=True)
|
6 |
|
7 |
from pytorch_lightning.callbacks import ModelCheckpoint
|