Spaces:
Sleeping
Sleeping
import einops | |
import torch | |
import torch as th | |
import torch.nn as nn | |
from ldm.modules.diffusionmodules.util import ( | |
conv_nd, | |
linear, | |
zero_module, | |
timestep_embedding, | |
) | |
from einops import rearrange, repeat | |
from torchvision.utils import make_grid | |
from ldm.modules.attention import SpatialTransformer | |
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock | |
from ldm.models.diffusion.ddpm import LatentDiffusion | |
from ldm.util import log_txt_as_img, exists, instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.modules.ema import LitEma | |
from contextlib import contextmanager, nullcontext | |
from cldm.model import load_state_dict | |
import numpy as np | |
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR, OneCycleLR | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
class ControlledUnetModel(UNetModel): | |
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs): | |
hs = [] | |
with torch.no_grad(): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
h = x.type(self.dtype) | |
for module in self.input_blocks: | |
h = module(h, emb, context) | |
hs.append(h) | |
h = self.middle_block(h, emb, context) | |
if control is not None: | |
h += control.pop() | |
for i, module in enumerate(self.output_blocks): | |
if only_mid_control or control is None: | |
h = torch.cat([h, hs.pop()], dim=1) | |
else: | |
h = torch.cat([h, hs.pop() + control.pop()], dim=1) | |
h = module(h, emb, context) | |
h = h.type(x.dtype) | |
return self.out(h) | |
class ControlNet(nn.Module): | |
def __init__( | |
self, | |
image_size, | |
in_channels, | |
model_channels, | |
hint_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
disable_self_attentions=None, | |
num_attention_blocks=None, | |
disable_middle_self_attn=False, | |
use_linear_in_transformer=False, | |
): | |
super().__init__() | |
if use_spatial_transformer: | |
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
if context_dim is not None: | |
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
from omegaconf.listconfig import ListConfig | |
if type(context_dim) == ListConfig: | |
context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.dims = dims | |
self.image_size = image_size | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
if len(num_res_blocks) != len(channel_mult): | |
raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
"as a list/tuple (per-level) with the same length as channel_mult") | |
self.num_res_blocks = num_res_blocks | |
if disable_self_attentions is not None: | |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
assert len(disable_self_attentions) == len(channel_mult) | |
if num_attention_blocks is not None: | |
assert len(num_attention_blocks) == len(self.num_res_blocks) | |
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | |
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " | |
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
f"attention will still not be set.") | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.use_checkpoint = use_checkpoint | |
self.dtype = th.float16 if use_fp16 else th.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.predict_codebook_ids = n_embed is not None | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) | |
self.input_hint_block = TimestepEmbedSequential( | |
conv_nd(dims, hint_channels, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 32, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(dims, 32, 32, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 32, 96, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(dims, 96, 96, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 96, 256, 3, padding=1, stride=2), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self.middle_block_out = self.make_zero_conv(ch) | |
self._feature_size += ch | |
def make_zero_conv(self, channels): | |
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) | |
def forward(self, x, hint, timesteps, context, **kwargs): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
guided_hint = self.input_hint_block(hint, emb, context) | |
outs = [] | |
h = x.type(self.dtype) | |
for module, zero_conv in zip(self.input_blocks, self.zero_convs): | |
if guided_hint is not None: | |
h = module(h, emb, context) | |
h += guided_hint | |
guided_hint = None | |
else: | |
h = module(h, emb, context) | |
outs.append(zero_conv(h, emb, context)) | |
h = self.middle_block(h, emb, context) | |
outs.append(self.middle_block_out(h, emb, context)) | |
return outs | |
class ControlLDM(LatentDiffusion): | |
def __init__(self, | |
control_stage_config, | |
control_key, only_mid_control, | |
learnable_conscale = False, guess_mode=False, | |
sd_locked = True, sep_lr = False, decoder_lr = 1.0**-4, | |
sep_cond_txt = True, exchange_cond_txt = False, concat_all_textemb = False, | |
*args, **kwargs | |
): | |
use_ema = kwargs.pop("use_ema", False) | |
ckpt_path = kwargs.pop("ckpt_path", None) | |
reset_ema = kwargs.pop("reset_ema", False) | |
only_model= kwargs.pop("only_model", False) | |
reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False) | |
keep_num_ema_updates = kwargs.pop("keep_num_ema_updates", False) | |
ignore_keys = kwargs.pop("ignore_keys", []) | |
super().__init__(*args, use_ema=False, **kwargs) | |
# Glyph ControlNet | |
self.control_model = instantiate_from_config(control_stage_config) | |
self.control_key = control_key | |
self.only_mid_control = only_mid_control | |
self.learnable_conscale = learnable_conscale | |
conscale_init = [1.0] * 13 if not guess_mode else [(0.825 ** float(12 - i)) for i in range(13)] | |
if learnable_conscale: | |
# self.control_scales = nn.Parameter(torch.ones(13), requires_grad=True) | |
self.control_scales = nn.Parameter(torch.Tensor(conscale_init), requires_grad=True) | |
else: | |
self.control_scales = conscale_init #[1.0] * 13 | |
self.optimizer = torch.optim.AdamW | |
# whether to unlock (fine-tune) the decoder parts of SD U-Net | |
self.sd_locked = sd_locked | |
self.sep_lr = sep_lr | |
self.decoder_lr = decoder_lr | |
# specify the input text embedding of two branches (SD branch and Glyph ControlNet branch) | |
self.sep_cond_txt = sep_cond_txt | |
self.concat_all_textemb = concat_all_textemb | |
self.exchange_cond_txt = exchange_cond_txt | |
# ema | |
self.use_ema = use_ema | |
if self.use_ema: | |
self.model_ema = LitEma(self.control_model, init_num_updates= 0) | |
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
if not self.sd_locked: | |
self.model_diffoutblock_ema = LitEma(self.model.diffusion_model.output_blocks, init_num_updates= 0) | |
print(f"Keeping diffoutblock EMAs of {len(list(self.model_diffoutblock_ema.buffers()))}.") | |
self.model_diffout_ema = LitEma(self.model.diffusion_model.out, init_num_updates= 0) | |
print(f"Keeping diffout EMAs of {len(list(self.model_diffout_ema.buffers()))}.") | |
# initialize the model from the checkpoint | |
if ckpt_path is not None: | |
ema_num_updates = self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model) | |
self.restarted_from_ckpt = True | |
if self.use_ema and reset_ema: | |
print( | |
f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.") | |
self.model_ema = LitEma(self.control_model, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) | |
if not self.sd_locked: | |
self.model_diffoutblock_ema = LitEma(self.model.diffusion_model.output_blocks, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) | |
self.model_diffout_ema = LitEma(self.model.diffusion_model.out, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) | |
if reset_num_ema_updates: | |
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ") | |
assert self.use_ema | |
self.model_ema.reset_num_updates() | |
if not self.sd_locked: # Update | |
self.model_diffoutblock_ema.reset_num_updates() | |
self.model_diffout_ema.reset_num_updates() | |
def ema_scope(self, context=None): | |
if self.use_ema: # TODO: fix the bug while adding transemb_model or trainable control scales | |
self.model_ema.store(self.control_model.parameters()) | |
self.model_ema.copy_to(self.control_model) | |
if not self.sd_locked: # Update | |
self.model_diffoutblock_ema.store(self.model.diffusion_model.output_blocks.parameters()) | |
self.model_diffoutblock_ema.copy_to(self.model.diffusion_model.output_blocks) | |
self.model_diffout_ema.store(self.model.diffusion_model.out.parameters()) | |
self.model_diffout_ema.copy_to(self.model.diffusion_model.out) | |
if context is not None: | |
print(f"{context}: Switched ControlNet to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.control_model.parameters()) | |
if not self.sd_locked: # Update | |
self.model_diffoutblock_ema.restore(self.model.diffusion_model.output_blocks.parameters()) | |
self.model_diffout_ema.restore(self.model.diffusion_model.out.parameters()) | |
if context is not None: | |
print(f"{context}: Restored training weights of ControlNet") | |
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): | |
if path.endswith("model_states.pt"): | |
sd = torch.load(path, map_location='cpu')["module"] | |
else: | |
# sd = load_state_dict(path, location='cpu') # abandoned | |
sd = torch.load(path, map_location="cpu") | |
if "state_dict" in list(sd.keys()): | |
sd = sd["state_dict"] | |
keys_ = list(sd.keys())[:] | |
for k in keys_: | |
if k.startswith("module."): | |
nk = k[7:] | |
sd[nk] = sd[k] | |
del sd[k] | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( | |
sd, strict=False) | |
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") | |
if len(missing) > 0: | |
print(f"Missing Keys:\n {missing}") | |
if len(unexpected) > 0: | |
print(f"\nUnexpected Keys:\n {unexpected}") | |
if "model_ema.num_updates" in sd and "model_ema.num_updates" not in unexpected: | |
return sd["model_ema.num_updates"].item() | |
else: | |
return 0 | |
def get_input(self, batch, k, bs=None, *args, **kwargs): | |
x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs) | |
control = batch[self.control_key] | |
if bs is not None: | |
control = control[:bs] | |
control = control.to(self.device) | |
control = einops.rearrange(control, 'b h w c -> b c h w') | |
control = control.to(memory_format=torch.contiguous_format).float() | |
return x, dict(c_crossattn=[c] if not isinstance(c, list) else c, c_concat=[control]) | |
def apply_model(self, x_noisy, t, cond, *args, **kwargs): | |
assert isinstance(cond, dict) | |
diffusion_model = self.model.diffusion_model | |
cond_txt_list = cond["c_crossattn"] | |
assert len(cond_txt_list) > 0 | |
# cond_txt: input text embedding of the pretrained SD branch | |
# cond_txt_2: input text embedding of the Glyph ControlNet branch | |
cond_txt = cond_txt_list[0] | |
if len(cond_txt_list) == 1: | |
cond_txt_2 = None | |
else: | |
if self.sep_cond_txt: | |
# use each embedding for each branch separately | |
cond_txt_2 = cond_txt_list[1] | |
else: | |
# concat the embedding for Glyph ControlNet branch | |
if not self.concat_all_textemb: | |
cond_txt_2 = torch.cat(cond_txt_list[1:], 1) | |
else: | |
cond_txt_2 = torch.cat(cond_txt_list, 1) | |
if self.exchange_cond_txt: | |
# exchange the input text embedding of two branches | |
txt_buffer = cond_txt | |
cond_txt = cond_txt_2 | |
cond_txt_2 = txt_buffer | |
if cond['c_concat'] is None: | |
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control) | |
else: | |
control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt if cond_txt_2 is None else cond_txt_2) | |
control = [c * scale for c, scale in zip(control, self.control_scales)] | |
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control) | |
return eps | |
def get_unconditional_conditioning(self, N): | |
return self.get_learned_conditioning([""] * N) | |
def training_step(self, batch, batch_idx, optimizer_idx=0): | |
loss = super().training_step(batch, batch_idx, optimizer_idx) | |
if self.use_scheduler and not self.sd_locked and self.sep_lr: | |
decoder_lr = self.optimizers().param_groups[1]["lr"] | |
self.log('decoder_lr_abs', decoder_lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
return loss | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.control_model.parameters()) | |
if self.learnable_conscale: | |
params += [self.control_scales] | |
params_wlr = [] | |
decoder_params = None | |
if not self.sd_locked: | |
decoder_params = list(self.model.diffusion_model.output_blocks.parameters()) | |
decoder_params += list(self.model.diffusion_model.out.parameters()) | |
if not self.sep_lr: | |
params.extend(decoder_params) | |
decoder_params = None | |
params_wlr.append({"params": params, "lr": lr}) | |
if decoder_params is not None: | |
params_wlr.append({"params": decoder_params, "lr": self.decoder_lr}) | |
# opt = torch.optim.AdamW(params_wlr) | |
opt = self.optimizer(params_wlr) | |
opts = [opt] | |
# updated | |
schedulers = [] | |
if self.use_scheduler: | |
assert 'target' in self.scheduler_config | |
scheduler_func = instantiate_from_config(self.scheduler_config) | |
print("Setting up LambdaLR scheduler...") | |
schedulers = [ | |
{ | |
'scheduler': LambdaLR( | |
opt, | |
lr_lambda= [scheduler_func.schedule] * len(params_wlr) #if not self.sep_lr else [scheduler_func.schedule, scheduler_func.schedule] | |
), | |
'interval': 'step', | |
'frequency': 1 | |
}] | |
return opts, schedulers | |
def low_vram_shift(self, is_diffusing): | |
if is_diffusing: | |
self.model = self.model.cuda() | |
self.control_model = self.control_model.cuda() | |
self.first_stage_model = self.first_stage_model.cpu() | |
self.cond_stage_model = self.cond_stage_model.cpu() | |
else: | |
self.model = self.model.cpu() | |
self.control_model = self.control_model.cpu() | |
self.first_stage_model = self.first_stage_model.cuda() | |
self.cond_stage_model = self.cond_stage_model.cuda() | |
# ema | |
def on_train_batch_end(self, *args, **kwargs): | |
if self.use_ema: | |
self.model_ema(self.control_model) | |
if not self.sd_locked: # Update | |
self.model_diffoutblock_ema(self.model.diffusion_model.output_blocks) | |
self.model_diffout_ema(self.model.diffusion_model.out) | |
if self.log_all_grad_norm: | |
zeroconvs = list(self.control_model.input_hint_block.named_parameters())[-2:] | |
zeroconvs.extend( | |
list(self.control_model.zero_convs.named_parameters()) | |
) | |
for item in zeroconvs: | |
self.log( | |
"zero_convs/{}_norm".format(item[0]), | |
item[1].cpu().detach().norm().item(), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
self.log( | |
"zero_convs/{}_max".format(item[0]), | |
torch.max(item[1].cpu().detach()).item(), #TODO: lack torch.abs | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
gradnorm_list = [] | |
for param_group in self.trainer.optimizers[0].param_groups: | |
for p in param_group['params']: | |
# assert p.requires_grad and p.grad is not None | |
if p.requires_grad and p.grad is not None: | |
grad_norm_v = p.grad.cpu().detach().norm().item() | |
gradnorm_list.append(grad_norm_v) | |
if len(gradnorm_list): | |
self.log("all_gradients/grad_norm_mean", | |
np.mean(gradnorm_list), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
self.log("all_gradients/grad_norm_max", | |
np.max(gradnorm_list), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
self.log("all_gradients/grad_norm_min", | |
np.min(gradnorm_list), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
self.log("all_gradients/param_num", | |
len(gradnorm_list), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
if self.learnable_conscale: | |
for i in range(len(self.control_scales)): | |
self.log( | |
"control_scale/control_{}".format(i), | |
self.control_scales[i], | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
del gradnorm_list | |
del zeroconvs | |