File size: 14,381 Bytes
0902a5f
 
 
200818a
0902a5f
c3743b9
200818a
 
dd51ab2
1f7ae51
4da8d8c
73a839e
0902a5f
 
 
 
 
 
 
 
 
 
 
73a839e
 
 
3b76554
0902a5f
 
 
 
 
 
 
73a839e
f769af2
0902a5f
 
 
 
 
 
 
73a839e
0902a5f
 
 
 
 
 
 
 
 
 
 
 
73a839e
0902a5f
 
 
 
 
 
 
73a839e
0902a5f
f769af2
0902a5f
 
 
 
 
 
 
73a839e
0902a5f
5b5da1b
200818a
 
 
 
 
 
 
ca83fd7
 
98333ba
 
 
4da8d8c
ca83fd7
4da8d8c
ca83fd7
4da8d8c
ca83fd7
4da8d8c
5b5da1b
73bb868
200818a
 
 
 
 
 
 
73a839e
 
896a210
b928f57
1f7ae51
 
 
79538bb
4da8d8c
73bb868
0902a5f
66a8222
 
 
 
 
 
 
 
 
 
0902a5f
 
 
 
66a8222
0902a5f
223682b
 
ca83fd7
0902a5f
 
 
 
 
c97b27f
0902a5f
 
223682b
c97b27f
223682b
 
 
 
 
92b8ea7
 
0902a5f
 
 
 
 
896a210
73a839e
 
 
 
200818a
 
 
ca83fd7
98333ba
896a210
0902a5f
200818a
c97b27f
43a1326
c97b27f
 
 
 
 
 
 
 
 
73a839e
c97b27f
 
0902a5f
dd51ab2
 
 
 
 
0902a5f
 
 
 
 
 
 
 
 
 
 
 
 
73a839e
 
0902a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
73a839e
200818a
896a210
200818a
73a839e
200818a
0902a5f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from cldm.ddim_hacked import DDIMSampler
import math
from omegaconf import OmegaConf
from scripts.rendertext_tool import Render_Text, load_model_from_config, load_model_ckpt
import gradio as gr  
import os
import torch
import time
from PIL import Image
from cldm.hack import disable_verbosity, enable_sliced_attention
# from pytorch_lightning import seed_everything

def process_multi_wrapper(rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
                            shared_prompt,  
                            width_0, width_1, width_2, width_3,  
                            ratio_0, ratio_1, ratio_2, ratio_3,  
                            top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3,  
                            top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3,  
                            yaw_0, yaw_1, yaw_2, yaw_3,  
                            num_rows_0, num_rows_1, num_rows_2, num_rows_3,  
                            shared_num_samples, shared_image_resolution,  
                            shared_ddim_steps, shared_guess_mode,  
                            shared_strength, shared_scale, shared_seed,  
                            shared_eta, shared_a_prompt, shared_n_prompt, allow_run_generation = True):  
    if not allow_run_generation:
        return "Please get the glyph image first by clicking the 'Render Glyph Image' button", None, allow_run_generation

    rendered_txt_values = [rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3]  
    width_values = [width_0, width_1, width_2, width_3]  
    ratio_values = [ratio_0, ratio_1, ratio_2, ratio_3]  
    top_left_x_values = [top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3]  
    top_left_y_values = [top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3]  
    yaw_values = [yaw_0, yaw_1, yaw_2, yaw_3]  
    num_rows_values = [num_rows_0, num_rows_1, num_rows_2, num_rows_3]  
    allow_run_generation = False
    return "The image generation process finished!", render_tool.process_multi(rendered_txt_values, shared_prompt,  
                                     width_values, ratio_values,  
                                     top_left_x_values, top_left_y_values,  
                                     yaw_values, num_rows_values,  
                                     shared_num_samples, shared_image_resolution,  
                                     shared_ddim_steps, shared_guess_mode,  
                                     shared_strength, shared_scale, shared_seed,  
                                     shared_eta, shared_a_prompt, shared_n_prompt 
                                    ), allow_run_generation
     
def process_multi_wrapper_only_show_rendered(rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
                            shared_prompt,  
                            width_0, width_1, width_2, width_3,  
                            ratio_0, ratio_1, ratio_2, ratio_3,  
                            top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3,  
                            top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3,  
                            yaw_0, yaw_1, yaw_2, yaw_3,  
                            num_rows_0, num_rows_1, num_rows_2, num_rows_3,  
                            shared_num_samples, shared_image_resolution,  
                            shared_ddim_steps, shared_guess_mode,  
                            shared_strength, shared_scale, shared_seed,  
                            shared_eta, shared_a_prompt, shared_n_prompt):   
    rendered_txt_values = [rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3]  
    width_values = [width_0, width_1, width_2, width_3]  
    ratio_values = [ratio_0, ratio_1, ratio_2, ratio_3]  
    top_left_x_values = [top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3]  
    top_left_y_values = [top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3]  
    yaw_values = [yaw_0, yaw_1, yaw_2, yaw_3]  
    num_rows_values = [num_rows_0, num_rows_1, num_rows_2, num_rows_3]  
    allow_run_generation = True
  
    return "The glyph image is generated!", render_tool.process_multi(rendered_txt_values, shared_prompt,  
                                     width_values, ratio_values,  
                                     top_left_x_values, top_left_y_values,  
                                     yaw_values, num_rows_values,  
                                     shared_num_samples, shared_image_resolution,  
                                     shared_ddim_steps, shared_guess_mode,  
                                     shared_strength, shared_scale, shared_seed,  
                                     shared_eta, shared_a_prompt, shared_n_prompt, 
                                     only_show_rendered_image=True), allow_run_generation  

def load_ckpt(model_ckpt = "LAION-Glyph-10M-Epoch-5"):
    global render_tool, model
    if torch.cuda.is_available():
        for i in range(5):
            torch.cuda.empty_cache()
        time.sleep(2)
        print("empty the cuda cache")

    # if model_ckpt == "LAION-Glyph-1M":
    #     model = load_model_ckpt(model, "laion1M_model_wo_ema.ckpt")
    # if model_ckpt == "LAION-Glyph-10M-Epoch-5":
    #     model = load_model_ckpt(model, "laion10M_epoch_5_model_wo_ema.ckpt")
    if model_ckpt == "LAION-Glyph-10M-Epoch-6":
        model = load_model_ckpt(model, "checkpoints/laion10M_epoch_6_model_wo_ema.ckpt")
    elif model_ckpt == "TextCaps-5K-Epoch-10":
        model = load_model_ckpt(model, "checkpoints/textcaps5K_epoch_10_model_wo_ema.ckpt")
    elif model_ckpt == "TextCaps-5K-Epoch-20":
        model = load_model_ckpt(model, "checkpoints/textcaps5K_epoch_20_model_wo_ema.ckpt")
    elif model_ckpt == "TextCaps-5K-Epoch-40":
        model = load_model_ckpt(model, "checkpoints/textcaps5K_epoch_40_model_wo_ema.ckpt")

    render_tool = Render_Text(model, save_memory = SAVE_MEMORY)
    output_str = f"already change the model checkpoint to {model_ckpt}"
    print(output_str)
    if torch.cuda.is_available():
        for i in range(5):
            torch.cuda.empty_cache()
        time.sleep(2)
        print("empty the cuda cache")
    allow_run_generation = False
    return output_str, None, allow_run_generation

SAVE_MEMORY = True #False
disable_verbosity()
if SAVE_MEMORY:
    enable_sliced_attention()
cfg = OmegaConf.load("config.yaml")
model = load_model_from_config(cfg, "checkpoints/laion10M_epoch_6_model_wo_ema.ckpt", verbose=True)
render_tool = Render_Text(model, save_memory = SAVE_MEMORY)


description = """
## Control Stable Diffusion with Glyph Images
"""

SPACE_ID = os.getenv('SPACE_ID')
if SPACE_ID is not None:
    # description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. < a href=" ">< img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></ a></p >'
    description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'

block = gr.Blocks().queue()  

with block:  
    with gr.Row():  
        gr.Markdown(description)  
        only_show_rendered_image = gr.Number(value=1, visible=False)
    default_width = [0.3, 0.3, 0.3, 0.3]
    default_top_left_x = [0.35, 0.15, 0.15, 0.5]
    default_top_left_y = [0.4, 0.15, 0.65, 0.65]
    with gr.Column():  
            
        with gr.Row(): 
            for i in range(4):  
                with gr.Column():  
                    exec(f"""rendered_txt_{i} = gr.Textbox(label=f"Render Text {i+1}")""")
                    
                    with gr.Accordion(f"Advanced options {i+1}", open=False):  
                        exec(f"""width_{i} = gr.Slider(label="Bbox Width", minimum=0., maximum=1, value={default_width[i]}, step=0.01)  """)
                        exec(f"""ratio_{i} = gr.Slider(label="Bbox_width_height_ratio", minimum=0., maximum=5, value=0., step=0.02, visible=False)  """)
                        # exec(f"""top_left_x_{i} = gr.Slider(label="Bbox Top Left x", minimum=0., maximum=1, value={0.35 - 0.25 * math.cos(math.pi * i)}, step=0.01)  """)
                        # exec(f"""top_left_y_{i} = gr.Slider(label="Bbox Top Left y", minimum=0., maximum=1, value={0.1 if i < 2 else 0.6}, step=0.01)  """)
                        exec(f"""top_left_x_{i} = gr.Slider(label="Bbox Top Left x", minimum=0., maximum=1, value={default_top_left_x[i]}, step=0.01)  """)
                        exec(f"""top_left_y_{i} = gr.Slider(label="Bbox Top Left y", minimum=0., maximum=1, value={default_top_left_y[i]}, step=0.01)  """)
                        exec(f"""yaw_{i} = gr.Slider(label="Bbox Yaw", minimum=-20, maximum=20, value=0, step=5) """)
                        # exec(f"""num_rows_{i} = gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1, visible=False)  """)
                        exec(f"""num_rows_{i} = gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1)  """)
        
        with gr.Row(): 
            with gr.Column():
                shared_prompt = gr.Textbox(label="Shared Prompt")
                with gr.Row():
                    show_render_button = gr.Button(value="Render Glyph Image")
                    run_button = gr.Button(value="Run Generation")   
                    allow_run_generation = gr.Checkbox(label='allow_run_generation',
                                                 value=False, visible=False) 

                with gr.Accordion("Model Options", open=False):
                    with gr.Row():
                        # model_ckpt = gr.inputs.Dropdown(["LAION-Glyph-10M", "Textcaps5K-10"], label="Checkpoint", default = "LAION-Glyph-10M")
                        # model_ckpt = gr.inputs.Dropdown(["LAION-Glyph-10M-Epoch-6", "LAION-Glyph-10M-Epoch-5", "LAION-Glyph-1M"], label="Checkpoint", default = "LAION-Glyph-10M-Epoch-6")
                        model_ckpt = gr.inputs.Dropdown(["LAION-Glyph-10M-Epoch-6", "TextCaps-5K-Epoch-10", "TextCaps-5K-Epoch-20", "TextCaps-5K-Epoch-40"], label="Checkpoint", default = "LAION-Glyph-10M-Epoch-6")
                        # load_button = gr.Button(value = "Load Checkpoint")
            
            with gr.Accordion("Shared Advanced Options", open=False):  
                with gr.Row():
                    shared_num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=3, step=1)  
                    shared_image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64, visible=False)  
                    shared_strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01, visible=False)  
                    shared_guess_mode = gr.Checkbox(label='Guess Mode', value=False, visible=False)  
                    shared_seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
                with gr.Row():
                    shared_scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)  
                    shared_ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)    
                    shared_eta = gr.Number(label="eta (DDIM)", value=0.0, visible=False)  
                with gr.Row():
                    shared_a_prompt = gr.Textbox(label="Added Prompt", value='4K, dslr, best quality, extremely detailed')  
                    shared_n_prompt = gr.Textbox(label="Negative Prompt",  
                                            value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') 
        
        with gr.Accordion("Output", open=True):
            with gr.Row(): 
                message = gr.Text(interactive=False, label = "Message")
            with gr.Row():
                result_gallery = gr.Gallery(label='Images', show_label=False, elem_id="gallery").style(grid=2, height='auto')  
    
    run_button.click(fn=process_multi_wrapper,  
                inputs=[rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
                        shared_prompt,  
                        width_0, width_1, width_2, width_3,  
                        ratio_0, ratio_1, ratio_2, ratio_3,  
                        top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3,  
                        top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3,  
                        yaw_0, yaw_1, yaw_2, yaw_3,  
                        num_rows_0, num_rows_1, num_rows_2, num_rows_3,  
                        shared_num_samples, shared_image_resolution,  
                        shared_ddim_steps, shared_guess_mode,  
                        shared_strength, shared_scale, shared_seed,  
                        shared_eta, shared_a_prompt, shared_n_prompt, allow_run_generation],  
                outputs=[message, result_gallery, allow_run_generation])  
    
    show_render_button.click(fn=process_multi_wrapper_only_show_rendered,  
                inputs=[rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
                        shared_prompt,  
                        width_0, width_1, width_2, width_3,  
                        ratio_0, ratio_1, ratio_2, ratio_3,  
                        top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3,  
                        top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3,  
                        yaw_0, yaw_1, yaw_2, yaw_3,  
                        num_rows_0, num_rows_1, num_rows_2, num_rows_3,  
                        shared_num_samples, shared_image_resolution,  
                        shared_ddim_steps, shared_guess_mode,  
                        shared_strength, shared_scale, shared_seed,  
                        shared_eta, shared_a_prompt, shared_n_prompt],  
                outputs=[message, result_gallery, allow_run_generation]) 
    
    model_ckpt.change(load_ckpt,                 
                inputs = [model_ckpt],
                outputs = [message, result_gallery, allow_run_generation]
    )

    block.launch()