Spaces:
Sleeping
Sleeping
File size: 14,381 Bytes
0902a5f 200818a 0902a5f c3743b9 200818a dd51ab2 1f7ae51 4da8d8c 73a839e 0902a5f 73a839e 3b76554 0902a5f 73a839e f769af2 0902a5f 73a839e 0902a5f 73a839e 0902a5f 73a839e 0902a5f f769af2 0902a5f 73a839e 0902a5f 5b5da1b 200818a ca83fd7 98333ba 4da8d8c ca83fd7 4da8d8c ca83fd7 4da8d8c ca83fd7 4da8d8c 5b5da1b 73bb868 200818a 73a839e 896a210 b928f57 1f7ae51 79538bb 4da8d8c 73bb868 0902a5f 66a8222 0902a5f 66a8222 0902a5f 223682b ca83fd7 0902a5f c97b27f 0902a5f 223682b c97b27f 223682b 92b8ea7 0902a5f 896a210 73a839e 200818a ca83fd7 98333ba 896a210 0902a5f 200818a c97b27f 43a1326 c97b27f 73a839e c97b27f 0902a5f dd51ab2 0902a5f 73a839e 0902a5f 73a839e 200818a 896a210 200818a 73a839e 200818a 0902a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
from cldm.ddim_hacked import DDIMSampler
import math
from omegaconf import OmegaConf
from scripts.rendertext_tool import Render_Text, load_model_from_config, load_model_ckpt
import gradio as gr
import os
import torch
import time
from PIL import Image
from cldm.hack import disable_verbosity, enable_sliced_attention
# from pytorch_lightning import seed_everything
def process_multi_wrapper(rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
shared_prompt,
width_0, width_1, width_2, width_3,
ratio_0, ratio_1, ratio_2, ratio_3,
top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3,
top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3,
yaw_0, yaw_1, yaw_2, yaw_3,
num_rows_0, num_rows_1, num_rows_2, num_rows_3,
shared_num_samples, shared_image_resolution,
shared_ddim_steps, shared_guess_mode,
shared_strength, shared_scale, shared_seed,
shared_eta, shared_a_prompt, shared_n_prompt, allow_run_generation = True):
if not allow_run_generation:
return "Please get the glyph image first by clicking the 'Render Glyph Image' button", None, allow_run_generation
rendered_txt_values = [rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3]
width_values = [width_0, width_1, width_2, width_3]
ratio_values = [ratio_0, ratio_1, ratio_2, ratio_3]
top_left_x_values = [top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3]
top_left_y_values = [top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3]
yaw_values = [yaw_0, yaw_1, yaw_2, yaw_3]
num_rows_values = [num_rows_0, num_rows_1, num_rows_2, num_rows_3]
allow_run_generation = False
return "The image generation process finished!", render_tool.process_multi(rendered_txt_values, shared_prompt,
width_values, ratio_values,
top_left_x_values, top_left_y_values,
yaw_values, num_rows_values,
shared_num_samples, shared_image_resolution,
shared_ddim_steps, shared_guess_mode,
shared_strength, shared_scale, shared_seed,
shared_eta, shared_a_prompt, shared_n_prompt
), allow_run_generation
def process_multi_wrapper_only_show_rendered(rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
shared_prompt,
width_0, width_1, width_2, width_3,
ratio_0, ratio_1, ratio_2, ratio_3,
top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3,
top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3,
yaw_0, yaw_1, yaw_2, yaw_3,
num_rows_0, num_rows_1, num_rows_2, num_rows_3,
shared_num_samples, shared_image_resolution,
shared_ddim_steps, shared_guess_mode,
shared_strength, shared_scale, shared_seed,
shared_eta, shared_a_prompt, shared_n_prompt):
rendered_txt_values = [rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3]
width_values = [width_0, width_1, width_2, width_3]
ratio_values = [ratio_0, ratio_1, ratio_2, ratio_3]
top_left_x_values = [top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3]
top_left_y_values = [top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3]
yaw_values = [yaw_0, yaw_1, yaw_2, yaw_3]
num_rows_values = [num_rows_0, num_rows_1, num_rows_2, num_rows_3]
allow_run_generation = True
return "The glyph image is generated!", render_tool.process_multi(rendered_txt_values, shared_prompt,
width_values, ratio_values,
top_left_x_values, top_left_y_values,
yaw_values, num_rows_values,
shared_num_samples, shared_image_resolution,
shared_ddim_steps, shared_guess_mode,
shared_strength, shared_scale, shared_seed,
shared_eta, shared_a_prompt, shared_n_prompt,
only_show_rendered_image=True), allow_run_generation
def load_ckpt(model_ckpt = "LAION-Glyph-10M-Epoch-5"):
global render_tool, model
if torch.cuda.is_available():
for i in range(5):
torch.cuda.empty_cache()
time.sleep(2)
print("empty the cuda cache")
# if model_ckpt == "LAION-Glyph-1M":
# model = load_model_ckpt(model, "laion1M_model_wo_ema.ckpt")
# if model_ckpt == "LAION-Glyph-10M-Epoch-5":
# model = load_model_ckpt(model, "laion10M_epoch_5_model_wo_ema.ckpt")
if model_ckpt == "LAION-Glyph-10M-Epoch-6":
model = load_model_ckpt(model, "checkpoints/laion10M_epoch_6_model_wo_ema.ckpt")
elif model_ckpt == "TextCaps-5K-Epoch-10":
model = load_model_ckpt(model, "checkpoints/textcaps5K_epoch_10_model_wo_ema.ckpt")
elif model_ckpt == "TextCaps-5K-Epoch-20":
model = load_model_ckpt(model, "checkpoints/textcaps5K_epoch_20_model_wo_ema.ckpt")
elif model_ckpt == "TextCaps-5K-Epoch-40":
model = load_model_ckpt(model, "checkpoints/textcaps5K_epoch_40_model_wo_ema.ckpt")
render_tool = Render_Text(model, save_memory = SAVE_MEMORY)
output_str = f"already change the model checkpoint to {model_ckpt}"
print(output_str)
if torch.cuda.is_available():
for i in range(5):
torch.cuda.empty_cache()
time.sleep(2)
print("empty the cuda cache")
allow_run_generation = False
return output_str, None, allow_run_generation
SAVE_MEMORY = True #False
disable_verbosity()
if SAVE_MEMORY:
enable_sliced_attention()
cfg = OmegaConf.load("config.yaml")
model = load_model_from_config(cfg, "checkpoints/laion10M_epoch_6_model_wo_ema.ckpt", verbose=True)
render_tool = Render_Text(model, save_memory = SAVE_MEMORY)
description = """
## Control Stable Diffusion with Glyph Images
"""
SPACE_ID = os.getenv('SPACE_ID')
if SPACE_ID is not None:
# description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. < a href=" ">< img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></ a></p >'
description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(description)
only_show_rendered_image = gr.Number(value=1, visible=False)
default_width = [0.3, 0.3, 0.3, 0.3]
default_top_left_x = [0.35, 0.15, 0.15, 0.5]
default_top_left_y = [0.4, 0.15, 0.65, 0.65]
with gr.Column():
with gr.Row():
for i in range(4):
with gr.Column():
exec(f"""rendered_txt_{i} = gr.Textbox(label=f"Render Text {i+1}")""")
with gr.Accordion(f"Advanced options {i+1}", open=False):
exec(f"""width_{i} = gr.Slider(label="Bbox Width", minimum=0., maximum=1, value={default_width[i]}, step=0.01) """)
exec(f"""ratio_{i} = gr.Slider(label="Bbox_width_height_ratio", minimum=0., maximum=5, value=0., step=0.02, visible=False) """)
# exec(f"""top_left_x_{i} = gr.Slider(label="Bbox Top Left x", minimum=0., maximum=1, value={0.35 - 0.25 * math.cos(math.pi * i)}, step=0.01) """)
# exec(f"""top_left_y_{i} = gr.Slider(label="Bbox Top Left y", minimum=0., maximum=1, value={0.1 if i < 2 else 0.6}, step=0.01) """)
exec(f"""top_left_x_{i} = gr.Slider(label="Bbox Top Left x", minimum=0., maximum=1, value={default_top_left_x[i]}, step=0.01) """)
exec(f"""top_left_y_{i} = gr.Slider(label="Bbox Top Left y", minimum=0., maximum=1, value={default_top_left_y[i]}, step=0.01) """)
exec(f"""yaw_{i} = gr.Slider(label="Bbox Yaw", minimum=-20, maximum=20, value=0, step=5) """)
# exec(f"""num_rows_{i} = gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1, visible=False) """)
exec(f"""num_rows_{i} = gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1) """)
with gr.Row():
with gr.Column():
shared_prompt = gr.Textbox(label="Shared Prompt")
with gr.Row():
show_render_button = gr.Button(value="Render Glyph Image")
run_button = gr.Button(value="Run Generation")
allow_run_generation = gr.Checkbox(label='allow_run_generation',
value=False, visible=False)
with gr.Accordion("Model Options", open=False):
with gr.Row():
# model_ckpt = gr.inputs.Dropdown(["LAION-Glyph-10M", "Textcaps5K-10"], label="Checkpoint", default = "LAION-Glyph-10M")
# model_ckpt = gr.inputs.Dropdown(["LAION-Glyph-10M-Epoch-6", "LAION-Glyph-10M-Epoch-5", "LAION-Glyph-1M"], label="Checkpoint", default = "LAION-Glyph-10M-Epoch-6")
model_ckpt = gr.inputs.Dropdown(["LAION-Glyph-10M-Epoch-6", "TextCaps-5K-Epoch-10", "TextCaps-5K-Epoch-20", "TextCaps-5K-Epoch-40"], label="Checkpoint", default = "LAION-Glyph-10M-Epoch-6")
# load_button = gr.Button(value = "Load Checkpoint")
with gr.Accordion("Shared Advanced Options", open=False):
with gr.Row():
shared_num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=3, step=1)
shared_image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64, visible=False)
shared_strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01, visible=False)
shared_guess_mode = gr.Checkbox(label='Guess Mode', value=False, visible=False)
shared_seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
with gr.Row():
shared_scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
shared_ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
shared_eta = gr.Number(label="eta (DDIM)", value=0.0, visible=False)
with gr.Row():
shared_a_prompt = gr.Textbox(label="Added Prompt", value='4K, dslr, best quality, extremely detailed')
shared_n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Accordion("Output", open=True):
with gr.Row():
message = gr.Text(interactive=False, label = "Message")
with gr.Row():
result_gallery = gr.Gallery(label='Images', show_label=False, elem_id="gallery").style(grid=2, height='auto')
run_button.click(fn=process_multi_wrapper,
inputs=[rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
shared_prompt,
width_0, width_1, width_2, width_3,
ratio_0, ratio_1, ratio_2, ratio_3,
top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3,
top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3,
yaw_0, yaw_1, yaw_2, yaw_3,
num_rows_0, num_rows_1, num_rows_2, num_rows_3,
shared_num_samples, shared_image_resolution,
shared_ddim_steps, shared_guess_mode,
shared_strength, shared_scale, shared_seed,
shared_eta, shared_a_prompt, shared_n_prompt, allow_run_generation],
outputs=[message, result_gallery, allow_run_generation])
show_render_button.click(fn=process_multi_wrapper_only_show_rendered,
inputs=[rendered_txt_0, rendered_txt_1, rendered_txt_2, rendered_txt_3,
shared_prompt,
width_0, width_1, width_2, width_3,
ratio_0, ratio_1, ratio_2, ratio_3,
top_left_x_0, top_left_x_1, top_left_x_2, top_left_x_3,
top_left_y_0, top_left_y_1, top_left_y_2, top_left_y_3,
yaw_0, yaw_1, yaw_2, yaw_3,
num_rows_0, num_rows_1, num_rows_2, num_rows_3,
shared_num_samples, shared_image_resolution,
shared_ddim_steps, shared_guess_mode,
shared_strength, shared_scale, shared_seed,
shared_eta, shared_a_prompt, shared_n_prompt],
outputs=[message, result_gallery, allow_run_generation])
model_ckpt.change(load_ckpt,
inputs = [model_ckpt],
outputs = [message, result_gallery, allow_run_generation]
)
block.launch() |