meg-huggingface
Switching to normalized task name.
72d2b05
import os, glob
import json
from datetime import datetime, timezone
from dataclasses import dataclass
from datasets import load_dataset, Dataset
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, snapshot_download, ModelInfo, list_models
from enum import Enum
OWNER = "AIEnergyScore"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)
task_mappings = {'automatic speech recognition':'automatic-speech-recognition', 'Object Detection': 'object-detection', 'Text Classification': 'text-classification',
'Image to Text':'image-to-text', 'Question Answering':'question-answering', 'Text Generation': 'text-generation',
'Image Classification':'image-classification', 'Sentence Similarity': 'sentence-similarity',
'Image Generation':'image-generation', 'Summarization':'summarization'}
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
def start_compute_space():
API.restart_space(COMPUTE_SPACE)
gr.Info(f"Okay! {COMPUTE_SPACE} should be running now!")
def get_model_size(model_info: ModelInfo):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
return model_size
def add_docker_eval(zip_file):
new_fid_list = zip_file.split("/")
new_fid = new_fid_list[-1]
if new_fid.endswith('.zip'):
API.upload_file(
path_or_fileobj=zip_file,
repo_id="AIEnergyScore/tested_proprietary_models",
path_in_repo='submitted_models/'+new_fid,
repo_type="dataset",
commit_message="Adding logs via submission Space.",
token=TOKEN
)
gr.Info('Uploaded logs to dataset! We will validate their validity and add them to the next version of the leaderboard.')
else:
gr.Info('You can only upload .zip files here!')
def add_new_eval(repo_id: str, task: str):
model_owner = repo_id.split("/")[0]
model_name = repo_id.split("/")[1]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
requests_dset = requests.to_pandas()
model_list = requests_dset[requests_dset['status'] == 'COMPLETED']['model'].tolist()
task_models = list(API.list_models(filter=task_mappings[task]))
task_model_names = [m.id for m in task_models]
if repo_id in model_list:
gr.Info('This model has already been run!')
elif repo_id not in task_model_names:
gr.Info("This model isn't compatible with the chosen task! Pick a different model-task combination")
else:
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=repo_id)
model_size = get_model_size(model_info=model_info)
likes = model_info.likes
except Exception:
gr.Info("Could not find information for model %s" % (model_name))
model_size = None
likes = None
gr.Info("Adding request")
request_dict = {
"model": repo_id,
"status": "PENDING",
"submitted_time": pd.to_datetime(current_time),
"task": task_mappings[task],
"likes": likes,
"params": model_size,
"leaderboard_version": "v0",}
#"license": license,
#"private": False,
#}
print("Writing out request file to dataset")
df_request_dict = pd.DataFrame([request_dict])
print(df_request_dict)
df_final = pd.concat([requests_dset, df_request_dict], ignore_index=True)
updated_dset = Dataset.from_pandas(df_final)
updated_dset.push_to_hub("AIEnergyScore/requests_debug", split="test", token=TOKEN)
gr.Info("Starting compute space at %s " % COMPUTE_SPACE)
return start_compute_space()
def print_existing_models():
requests= load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
requests_dset = requests.to_pandas()
model_df= requests_dset[['model', 'status']]
model_df = model_df[model_df['status'] == 'COMPLETED']
return model_df
def highlight_cols(x):
df = x.copy()
df[df['status'] == 'COMPLETED'] = 'color: green'
df[df['status'] == 'PENDING'] = 'color: orange'
df[df['status'] == 'FAILED'] = 'color: red'
return df
# Applying the style function
existing_models = print_existing_models()
formatted_df = existing_models.style.apply(highlight_cols, axis=None)
def get_leaderboard_models():
path = r'leaderboard_v0_data/energy'
filenames = glob.glob(path + "/*.csv")
data = []
for filename in filenames:
data.append(pd.read_csv(filename))
leaderboard_data = pd.concat(data, ignore_index=True)
return leaderboard_data[['model','task']]
with gr.Blocks() as demo:
gr.Markdown("# Energy Score Submission Portal - v.0 (Fall 2024) 🌎 πŸ’» 🌟")
gr.Markdown("### The goal of the AI Energy Score project is to develop an energy-based rating system for AI model deployment that will guide members of the community in choosing models for different tasks based on energy efficiency.", elem_classes="markdown-text")
gr.Markdown("### If you want us to evaluate a model hosted on the πŸ€— Hub, enter the model ID and choose the corresponding task from the dropdown list below, then click **Run Analysis** to launch the benchmarking process.")
gr.Markdown("### If you've used the [Docker file](https://github.com/huggingface/EnergyStarAI/) that we created to run your own evaluation, please submit the resulting log files at the bottom of the page.")
gr.Markdown("### The [Project Leaderboard](https://huggingface.co/spaces/EnergyStarAI/2024_Leaderboard) will be updated quarterly, as new models get submitted.")
with gr.Row():
with gr.Column():
task = gr.Dropdown(
choices=list(task_mappings.keys()),
label="Choose a benchmark task",
value='Text Generation',
multiselect=False,
interactive=True,
)
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
with gr.Row():
with gr.Column():
submit_button = gr.Button("Run Analysis")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[
model_name_textbox,
task,
],
outputs=submission_result,
)
with gr.Row():
with gr.Column():
with gr.Accordion("Submit log files from a Docker run:", open=False):
gr.Markdown("If you've already benchmarked your model using the [Docker file](https://github.com/huggingface/EnergyStarAI/) provided, please upload the **entire run log directory** (in .zip format) below:")
file_output = gr.File(visible=False)
u = gr.UploadButton("Upload a zip file with logs", file_count="single")
u.upload(add_docker_eval, u, file_output)
with gr.Row():
with gr.Column():
with gr.Accordion("Models that are in the latest leaderboard version:", open=False):
gr.Dataframe(get_leaderboard_models())
with gr.Accordion("Models that have been benchmarked recently:", open=False):
gr.Dataframe(formatted_df)
demo.launch()