File size: 10,711 Bytes
8ad42cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from typing import Optional
import json
from argparse import Namespace
from pathlib import Path
from transformers import Text2TextGenerationPipeline, AutoModelForSeq2SeqLM, AutoTokenizer

def get_markers_for_model(is_t5_model: bool) -> Namespace:
    special_tokens_constants = Namespace() 
    if is_t5_model:
        # T5 model have 100 special tokens by default
        special_tokens_constants.separator_input_question_predicate = "<extra_id_1>"
        special_tokens_constants.separator_output_answers = "<extra_id_3>"
        special_tokens_constants.separator_output_questions = "<extra_id_5>"  # if using only questions
        special_tokens_constants.separator_output_question_answer = "<extra_id_7>"
        special_tokens_constants.separator_output_pairs = "<extra_id_9>"
        special_tokens_constants.predicate_generic_marker = "<extra_id_10>" 
        special_tokens_constants.predicate_verb_marker = "<extra_id_11>" 
        special_tokens_constants.predicate_nominalization_marker = "<extra_id_12>" 

    else:
        special_tokens_constants.separator_input_question_predicate = "<question_predicate_sep>"
        special_tokens_constants.separator_output_answers = "<answers_sep>"
        special_tokens_constants.separator_output_questions = "<question_sep>"  # if using only questions
        special_tokens_constants.separator_output_question_answer = "<question_answer_sep>"
        special_tokens_constants.separator_output_pairs = "<qa_pairs_sep>"
        special_tokens_constants.predicate_generic_marker = "<predicate_marker>" 
        special_tokens_constants.predicate_verb_marker = "<verbal_predicate_marker>" 
        special_tokens_constants.predicate_nominalization_marker = "<nominalization_predicate_marker>" 
    return special_tokens_constants

def load_trained_model(name_or_path):
    import huggingface_hub as HFhub
    tokenizer = AutoTokenizer.from_pretrained(name_or_path)
    model = AutoModelForSeq2SeqLM.from_pretrained(name_or_path)  
    # load preprocessing_kwargs from the model repo on HF hub, or from the local model directory
    kwargs_filename = None
    if name_or_path.startswith("kleinay/"): # and 'preprocessing_kwargs.json' in HFhub.list_repo_files(name_or_path): # the supported version of HFhub doesn't support list_repo_files
        kwargs_filename = HFhub.hf_hub_download(repo_id=name_or_path, filename="preprocessing_kwargs.json")
    elif Path(name_or_path).is_dir() and (Path(name_or_path) / "experiment_kwargs.json").exists():
        kwargs_filename = Path(name_or_path) / "experiment_kwargs.json"
    
    if kwargs_filename:
        preprocessing_kwargs = json.load(open(kwargs_filename)) 
        # integrate into model.config (for decoding args, e.g. "num_beams"), and save also as standalone object for preprocessing
        model.config.preprocessing_kwargs = Namespace(**preprocessing_kwargs)
        model.config.update(preprocessing_kwargs)
    return model, tokenizer


class QASRL_Pipeline(Text2TextGenerationPipeline):
    def __init__(self, model_repo: str, **kwargs):
        model, tokenizer = load_trained_model(model_repo)
        super().__init__(model, tokenizer, framework="pt")
        self.is_t5_model = "t5" in model.config.model_type
        self.special_tokens = get_markers_for_model(self.is_t5_model)
        self.data_args = model.config.preprocessing_kwargs 
        # backward compatibility - default keyword values implemeted in `run_summarization`, thus not saved in `preprocessing_kwargs`
        if "predicate_marker_type" not in vars(self.data_args):
            self.data_args.predicate_marker_type = "generic"
        if "use_bilateral_predicate_marker" not in vars(self.data_args):
            self.data_args.use_bilateral_predicate_marker = True
        if "append_verb_form" not in vars(self.data_args):
            self.data_args.append_verb_form = True
        self._update_config(**kwargs)
    
    def _update_config(self, **kwargs):
        " Update self.model.config with initialization parameters and necessary defaults. "
        # set default values that will always override model.config, but can overriden by __init__ kwargs
        kwargs["max_length"] = kwargs.get("max_length", 80)
        # override model.config with kwargs
        for k,v in kwargs.items():
            self.model.config.__dict__[k] = v           
        
    def _sanitize_parameters(self, **kwargs):
        preprocess_kwargs, forward_kwargs, postprocess_kwargs = {}, {}, {} 
        if "predicate_marker" in kwargs:
            preprocess_kwargs["predicate_marker"] = kwargs["predicate_marker"]
        if "predicate_type" in kwargs:
            preprocess_kwargs["predicate_type"] = kwargs["predicate_type"]
        if "verb_form" in kwargs:
            preprocess_kwargs["verb_form"] = kwargs["verb_form"]
        return preprocess_kwargs, forward_kwargs, postprocess_kwargs

    def preprocess(self, inputs, predicate_marker="<predicate>", predicate_type=None, verb_form=None):
        # Here, inputs is string or list of strings; apply string postprocessing
        if isinstance(inputs, str):
            processed_inputs = self._preprocess_string(inputs, predicate_marker, predicate_type, verb_form)
        elif hasattr(inputs, "__iter__"):
            processed_inputs = [self._preprocess_string(s, predicate_marker, predicate_type, verb_form) for s in inputs]
        else:
            raise ValueError("inputs must be str or Iterable[str]")
        # Now pass to super.preprocess for tokenization
        return super().preprocess(processed_inputs)
    
    def _preprocess_string(self, seq: str, predicate_marker: str, predicate_type: Optional[str], verb_form: Optional[str]) -> str:
        sent_tokens = seq.split(" ")
        assert predicate_marker in sent_tokens, f"Input sentence must include a predicate-marker token ('{predicate_marker}') before the target predicate word"
        predicate_idx = sent_tokens.index(predicate_marker)
        sent_tokens.remove(predicate_marker)
        sentence_before_predicate = " ".join([sent_tokens[i] for i in range(predicate_idx)])
        predicate = sent_tokens[predicate_idx]
        sentence_after_predicate = " ".join([sent_tokens[i] for i in range(predicate_idx+1, len(sent_tokens))])
        
        if self.data_args.predicate_marker_type == "generic":
            predicate_marker = self.special_tokens.predicate_generic_marker    
        #  In case we want special marker for each predicate type: """
        elif self.data_args.predicate_marker_type == "pred_type":
            assert predicate_type is not None, "For this model, you must provide the `predicate_type` either when initializing QASRL_Pipeline(...) or when applying __call__(...) on it"
            assert predicate_type in ("verbal", "nominal"), f"`predicate_type` must be either 'verbal' or 'nominal'; got '{predicate_type}'"
            predicate_marker = {"verbal": self.special_tokens.predicate_verb_marker , 
                                "nominal": self.special_tokens.predicate_nominalization_marker 
                                }[predicate_type]

        if self.data_args.use_bilateral_predicate_marker:
            seq = f"{sentence_before_predicate} {predicate_marker} {predicate} {predicate_marker} {sentence_after_predicate}"
        else:
            seq = f"{sentence_before_predicate} {predicate_marker} {predicate} {sentence_after_predicate}"

        # embed also verb_form
        if self.data_args.append_verb_form and verb_form is None:
            raise ValueError(f"For this model, you must provide the `verb_form` of the predicate when applying __call__(...)")
        elif self.data_args.append_verb_form:
            seq = f"{seq} {self.special_tokens.separator_input_question_predicate} {verb_form} "
        else:
            seq = f"{seq} "
    
        # append source prefix (for t5 models)
        prefix = self._get_source_prefix(predicate_type)
        
        return prefix + seq
    
    def _get_source_prefix(self, predicate_type: Optional[str]):
        if not self.is_t5_model or self.data_args.source_prefix is None:
            return ''
        if not self.data_args.source_prefix.startswith("<"):  # Regular prefix - not dependent on input row x
            return self.data_args.source_prefix
        if self.data_args.source_prefix == "<predicate-type>":
            if predicate_type is None:
                raise ValueError("source_prefix is '<predicate-type>' but input no `predicate_type`.")
            else:
                return f"Generate QAs for {predicate_type} QASRL: "
    
    def _forward(self, *args, **kwargs):
        outputs = super()._forward(*args, **kwargs)
        return outputs


    def postprocess(self, model_outputs):
        output_seq = self.tokenizer.decode(
            model_outputs["output_ids"].squeeze(),
            skip_special_tokens=False,
            clean_up_tokenization_spaces=False,
        )
        output_seq = output_seq.strip(self.tokenizer.pad_token).strip(self.tokenizer.eos_token).strip()
        qa_subseqs = output_seq.split(self.special_tokens.separator_output_pairs)
        qas = [self._postrocess_qa(qa_subseq) for qa_subseq in qa_subseqs]
        return {"generated_text": output_seq,
                "QAs": qas}
        
    def _postrocess_qa(self, seq: str) -> str:
        # split question and answers
        if self.special_tokens.separator_output_question_answer in seq:
            question, answer = seq.split(self.special_tokens.separator_output_question_answer)[:2]
        else:
            print("invalid format: no separator between question and answer found...")
            return None
            # question, answer = seq, '' # Or: backoff to only question  
        # skip "_" slots in questions
        question = ' '.join(t for t in question.split(' ') if t != '_')
        answers = [a.strip() for a in answer.split(self.special_tokens.separator_output_answers)]
        return {"question": question, "answers": answers}
    
    
if __name__ == "__main__":
    pipe = QASRL_Pipeline("kleinay/qanom-seq2seq-model-baseline")
    res1 = pipe("The student was interested in Luke 's <predicate> research about sea animals .", verb_form="research", predicate_type="nominal")
    res2 = pipe(["The doctor was interested in Luke 's <predicate> treatment .",
                 "The Veterinary student was interested in Luke 's <predicate> treatment of sea animals ."], verb_form="treat", predicate_type="nominal", num_beams=10)
    res3 = pipe("A number of professions have <predicate> developed that specialize in the treatment of mental disorders .", verb_form="develop", predicate_type="verbal")
    print(res1)
    print(res2)
    print(res3)