Spaces:
Sleeping
Sleeping
hf upload
Browse files- app.py +126 -0
- data/results/adversarial_robustness_i2t_summary.json +20 -0
- data/results/adversarial_robustness_t2i_summary.json +38 -0
- data/results/fairness_i2t_summary.json +20 -0
- data/results/fairness_t2i_summary.json +38 -0
- data/results/hallucination_i2t_summary.json +29 -0
- data/results/hallucination_t2i_summary.json +56 -0
- data/results/ood_i2t_summary.json +638 -0
- data/results/ood_t2i_summary.json +590 -0
- data/results/privacy_i2t_summary.json +66 -0
- data/results/privacy_t2i_summary.json +42 -0
- data/results/safety_i2t_summary.json +20 -0
- data/results/safety_t2i_summary.json +39 -0
- generate_plot.py +241 -0
- requirements.txt +31 -0
- utils/score_extract/adversarial_robustness_agg.py +40 -0
- utils/score_extract/fairness_agg.py +44 -0
- utils/score_extract/hallucination_agg.py +22 -0
- utils/score_extract/ood_agg.py +150 -0
- utils/score_extract/privacy_agg.py +40 -0
- utils/score_extract/safety_agg.py +41 -0
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from generate_plot import generate_main_plot, generate_sub_plot
|
3 |
+
from utils.score_extract.ood_agg import ood_t2i_agg, ood_i2t_agg
|
4 |
+
from utils.score_extract.hallucination_agg import hallucination_t2i_agg, hallucination_i2t_agg
|
5 |
+
from utils.score_extract.safety_agg import safety_t2i_agg, safety_i2t_agg
|
6 |
+
from utils.score_extract.adversarial_robustness_agg import adversarial_robustness_t2i_agg, adversarial_robustness_i2t_agg
|
7 |
+
from utils.score_extract.fairness_agg import fairness_t2i_agg, fairness_i2t_agg
|
8 |
+
from utils.score_extract.privacy_agg import privacy_t2i_agg, privacy_i2t_agg
|
9 |
+
|
10 |
+
t2i_models = [ # Average time spent running the following example
|
11 |
+
"dall-e-2",
|
12 |
+
"dall-e-3",
|
13 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
14 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
15 |
+
"prompthero/openjourney-v4", # 4.981
|
16 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
17 |
+
]
|
18 |
+
i2t_models = [ # Average time spent running the following example
|
19 |
+
"gpt-4-vision-preview",
|
20 |
+
"gpt-4o-2024-05-13",
|
21 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
22 |
+
]
|
23 |
+
perspectives = ["safety", "fairness", "hallucination", "privacy", "adv", "ood"]
|
24 |
+
main_scores_t2i = {}
|
25 |
+
main_scores_i2t = {}
|
26 |
+
|
27 |
+
sub_scores_t2i = {}
|
28 |
+
sub_scores_i2t = {}
|
29 |
+
for model in t2i_models:
|
30 |
+
model = model.split("/")[-1]
|
31 |
+
main_scores_t2i[model] = {}
|
32 |
+
for perspective in perspectives:
|
33 |
+
if perspective not in sub_scores_t2i.keys():
|
34 |
+
sub_scores_t2i[perspective] = {}
|
35 |
+
if perspective == "hallucination":
|
36 |
+
main_scores_t2i[model][perspective] = hallucination_t2i_agg(model, "./data/results")["score"]
|
37 |
+
sub_scores_t2i[perspective][model] = hallucination_t2i_agg(model, "./data/results")["subscenarios"]
|
38 |
+
elif perspective == "safety":
|
39 |
+
main_scores_t2i[model][perspective] = safety_t2i_agg(model, "./data/results")["score"]
|
40 |
+
sub_scores_t2i[perspective][model] = safety_t2i_agg(model, "./data/results")["subscenarios"]
|
41 |
+
elif perspective == "adv":
|
42 |
+
main_scores_t2i[model][perspective] = adversarial_robustness_t2i_agg(model, "./data/results")["score"]
|
43 |
+
sub_scores_t2i[perspective][model] = adversarial_robustness_t2i_agg(model, "./data/results")["subscenarios"]
|
44 |
+
elif perspective == "fairness":
|
45 |
+
main_scores_t2i[model][perspective] = fairness_t2i_agg(model, "./data/results")["score"]
|
46 |
+
sub_scores_t2i[perspective][model] = fairness_t2i_agg(model, "./data/results")["subscenarios"]
|
47 |
+
elif perspective == "privacy":
|
48 |
+
main_scores_t2i[model][perspective] = privacy_t2i_agg(model, "./data/results")["score"]
|
49 |
+
sub_scores_t2i[perspective][model] = privacy_t2i_agg(model, "./data/results")["subscenarios"]
|
50 |
+
elif perspective == "ood":
|
51 |
+
main_scores_t2i[model][perspective] = ood_t2i_agg(model, "./data/results")["score"]
|
52 |
+
sub_scores_t2i[perspective][model] = ood_t2i_agg(model, "./data/results")["subscenarios"]
|
53 |
+
else:
|
54 |
+
raise ValueError("Invalid perspective")
|
55 |
+
|
56 |
+
|
57 |
+
for model in i2t_models:
|
58 |
+
model = model.split("/")[-1]
|
59 |
+
main_scores_i2t[model] = {}
|
60 |
+
for perspective in perspectives:
|
61 |
+
if perspective not in sub_scores_i2t.keys():
|
62 |
+
sub_scores_i2t[perspective] = {}
|
63 |
+
if perspective == "hallucination":
|
64 |
+
main_scores_i2t[model][perspective] = hallucination_i2t_agg(model, "./data/results")["score"]
|
65 |
+
sub_scores_i2t[perspective][model] = hallucination_i2t_agg(model, "./data/results")["subscenarios"]
|
66 |
+
elif perspective == "safety":
|
67 |
+
main_scores_i2t[model][perspective] = safety_i2t_agg(model, "./data/results")["score"]
|
68 |
+
sub_scores_i2t[perspective][model] = safety_i2t_agg(model, "./data/results")["subscenarios"]
|
69 |
+
elif perspective == "adv":
|
70 |
+
main_scores_i2t[model][perspective] = adversarial_robustness_i2t_agg(model, "./data/results")["score"]
|
71 |
+
sub_scores_i2t[perspective][model] = adversarial_robustness_i2t_agg(model, "./data/results")["subscenarios"]
|
72 |
+
elif perspective == "fairness":
|
73 |
+
main_scores_i2t[model][perspective] = fairness_i2t_agg(model, "./data/results")["score"]
|
74 |
+
sub_scores_i2t[perspective][model] = fairness_i2t_agg(model, "./data/results")["subscenarios"]
|
75 |
+
elif perspective == "privacy":
|
76 |
+
main_scores_i2t[model][perspective] = privacy_i2t_agg(model, "./data/results")["score"]
|
77 |
+
sub_scores_i2t[perspective][model] = privacy_i2t_agg(model, "./data/results")["subscenarios"]
|
78 |
+
elif perspective == "ood":
|
79 |
+
main_scores_i2t[model][perspective] = ood_i2t_agg(model, "./data/results")["score"]
|
80 |
+
sub_scores_i2t[perspective][model] = ood_i2t_agg
|
81 |
+
else:
|
82 |
+
raise ValueError("Invalid perspective")
|
83 |
+
|
84 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
85 |
+
with gr.Column(visible=True) as output_col:
|
86 |
+
with gr.Row(visible=True) as report_col:
|
87 |
+
curr_select = gr.Dropdown(
|
88 |
+
choices = ["Main Figure"] + perspectives,
|
89 |
+
label="Select Scenario",
|
90 |
+
value="Main Figure"
|
91 |
+
)
|
92 |
+
select_model_type = gr.Dropdown(
|
93 |
+
choices = ["T2I", "I2T"],
|
94 |
+
label = "Select Model Type",
|
95 |
+
value = "T2I"
|
96 |
+
)
|
97 |
+
gr.Markdown("# Overall statistics")
|
98 |
+
plot = gr.Plot(value=generate_main_plot(t2i_models, main_scores_t2i))
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
def radar(model_type, perspective):
|
103 |
+
perspectives_name = perspectives + ["Main Figure"]
|
104 |
+
if model_type == "T2I":
|
105 |
+
models = t2i_models
|
106 |
+
main_scores = main_scores_t2i
|
107 |
+
sub_scores = sub_scores_t2i
|
108 |
+
else:
|
109 |
+
models = i2t_models
|
110 |
+
main_scores = main_scores_i2t
|
111 |
+
sub_scores = sub_scores_i2t
|
112 |
+
if len(perspective) == 0 or perspective == "Main Figure":
|
113 |
+
fig = generate_main_plot(models, main_scores)
|
114 |
+
select = gr.Dropdown(choices=perspectives_name, value="Main Figure", label="Select Scenario")
|
115 |
+
type_dropdown = gr.Dropdown(choices=["T2I", "I2T"], label="Select Model Type", value=model_type)
|
116 |
+
else:
|
117 |
+
fig = generate_sub_plot(models, sub_scores, perspective)
|
118 |
+
select = gr.Dropdown(choices=perspectives_name, value=perspective, label="Select Scenario")
|
119 |
+
type_dropdown = gr.Dropdown(choices=["T2I", "I2T"], label="Select Model Type", value=model_type)
|
120 |
+
return {plot: fig, curr_select: select, select_model_type: type_dropdown}
|
121 |
+
gr.on(triggers=[curr_select.change, select_model_type.change], fn=radar, inputs=[select_model_type, curr_select], outputs=[plot, curr_select, select_model_type])
|
122 |
+
|
123 |
+
if __name__ == "__main__":
|
124 |
+
demo.queue().launch()
|
125 |
+
|
126 |
+
|
data/results/adversarial_robustness_i2t_summary.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"llava-v1.6-vicuna-7b-hf": {
|
3 |
+
"Object": 66.82,
|
4 |
+
"Attribute": 94.40,
|
5 |
+
"Spatial": 28.88,
|
6 |
+
"Average": 70.02
|
7 |
+
},
|
8 |
+
"gpt-4-vision-preview": {
|
9 |
+
"Object": 92.45,
|
10 |
+
"Attribute": 91.27,
|
11 |
+
"Spatial": 48.38,
|
12 |
+
"Average": 85.27
|
13 |
+
},
|
14 |
+
"gpt-4o-2024-05-13": {
|
15 |
+
"Object": 97.74,
|
16 |
+
"Attribute": 93.08,
|
17 |
+
"Spatial": 53.79,
|
18 |
+
"Average": 90.04
|
19 |
+
}
|
20 |
+
}
|
data/results/adversarial_robustness_t2i_summary.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"stable-diffusion-xl-base-1.0": {
|
3 |
+
"Object": 74.20,
|
4 |
+
"Attribute": 68.39,
|
5 |
+
"Spatial": 35.20,
|
6 |
+
"Average": 54.00
|
7 |
+
},
|
8 |
+
"dreamlike-photoreal-2.0": {
|
9 |
+
"Object": 75.38,
|
10 |
+
"Attribute": 62.98,
|
11 |
+
"Spatial": 26.71,
|
12 |
+
"Average": 48.70
|
13 |
+
},
|
14 |
+
"openjourney-v4": {
|
15 |
+
"Object": 75.28,
|
16 |
+
"Attribute": 58.59,
|
17 |
+
"Spatial": 24.18,
|
18 |
+
"Average": 46.22
|
19 |
+
},
|
20 |
+
"IF-I-M-v1.0": {
|
21 |
+
"Object": 81.45,
|
22 |
+
"Attribute": 61.50,
|
23 |
+
"Spatial": 20.56,
|
24 |
+
"Average": 46.80
|
25 |
+
},
|
26 |
+
"dall-e-2": {
|
27 |
+
"Object": 76.95,
|
28 |
+
"Attribute": 55.72,
|
29 |
+
"Spatial": 26.00,
|
30 |
+
"Average": 46.66
|
31 |
+
},
|
32 |
+
"dall-e-3": {
|
33 |
+
"Object": 85.02,
|
34 |
+
"Attribute": 58.55,
|
35 |
+
"Spatial": 51.18,
|
36 |
+
"Average": 61.38
|
37 |
+
}
|
38 |
+
}
|
data/results/fairness_i2t_summary.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"llava-v1.6-vicuna-7b-hf": {
|
3 |
+
"Gender": 0.807,
|
4 |
+
"Race": 0.638,
|
5 |
+
"Age": 0.404,
|
6 |
+
"Average": 0.616
|
7 |
+
},
|
8 |
+
"gpt-4-vision-preview": {
|
9 |
+
"Gender": 0.035,
|
10 |
+
"Race": 0.000,
|
11 |
+
"Spatial": 0.384,
|
12 |
+
"Average": 0.140
|
13 |
+
},
|
14 |
+
"gpt-4o-2024-05-13": {
|
15 |
+
"Gender": 0.054,
|
16 |
+
"Race": 0.035,
|
17 |
+
"Age": 1.000,
|
18 |
+
"Average": 0.363
|
19 |
+
}
|
20 |
+
}
|
data/results/fairness_t2i_summary.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"stable-diffusion-xl-base-1.0": {
|
3 |
+
"Gender": 0.730,
|
4 |
+
"Race": 0.718,
|
5 |
+
"Age": 0.829,
|
6 |
+
"Average": 0.759
|
7 |
+
},
|
8 |
+
"dreamlike-photoreal-2.0": {
|
9 |
+
"Gender": 0.657,
|
10 |
+
"Race": 0.872,
|
11 |
+
"Age": 0.869,
|
12 |
+
"Average": 0.799
|
13 |
+
},
|
14 |
+
"openjourney-v4": {
|
15 |
+
"Gender": 0.811,
|
16 |
+
"Race": 0.829,
|
17 |
+
"Age": 0.864,
|
18 |
+
"Average": 0.836
|
19 |
+
},
|
20 |
+
"IF-I-M-v1.0": {
|
21 |
+
"Gender": 0.601,
|
22 |
+
"Race": 0.586,
|
23 |
+
"Age": 0.447,
|
24 |
+
"Average": 0.545
|
25 |
+
},
|
26 |
+
"dall-e-2": {
|
27 |
+
"Gender": 0.792,
|
28 |
+
"Race": 0.796,
|
29 |
+
"Age": 0.763,
|
30 |
+
"Average": 0.784
|
31 |
+
},
|
32 |
+
"dall-e-3": {
|
33 |
+
"Gender": 0.372,
|
34 |
+
"Race": 0.752,
|
35 |
+
"Age": 0.800,
|
36 |
+
"Average": 0.641
|
37 |
+
}
|
38 |
+
}
|
data/results/hallucination_i2t_summary.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"llava-v1.6-vicuna-7b-hf": {
|
3 |
+
"Natural Selection": 16.1,
|
4 |
+
"Distraction": 59.5,
|
5 |
+
"Counterfactual Reasoning": 19.9,
|
6 |
+
"Co-occurrence": 54.3,
|
7 |
+
"Misleading Prompts": 34.2,
|
8 |
+
"OCR": 14.4,
|
9 |
+
"Average": 33.1
|
10 |
+
},
|
11 |
+
"gpt-4-vision-preview": {
|
12 |
+
"Natural Selection": 23.3,
|
13 |
+
"Distraction": 54.4,
|
14 |
+
"Counterfactual Reasoning": 45.9,
|
15 |
+
"Co-occurrence": 60.5,
|
16 |
+
"Misleading Prompts": 52.2,
|
17 |
+
"OCR": 26.2,
|
18 |
+
"Average": 43.8
|
19 |
+
},
|
20 |
+
"gpt-4o-2024-05-13": {
|
21 |
+
"Natural Selection": 25.3,
|
22 |
+
"Distraction": 57.8,
|
23 |
+
"Counterfactual Reasoning": 50.7,
|
24 |
+
"Co-occurrence": 62.8,
|
25 |
+
"Misleading Prompts": 43.2,
|
26 |
+
"OCR": 36.8,
|
27 |
+
"Average": 46.1
|
28 |
+
}
|
29 |
+
}
|
data/results/hallucination_t2i_summary.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"stable-diffusion-xl-base-1.0": {
|
3 |
+
"Natural Selection": 18.3,
|
4 |
+
"Distraction": 39.0,
|
5 |
+
"Counterfactual Reasoning": 13.3,
|
6 |
+
"Co-occurrence": 30.8,
|
7 |
+
"Misleading Prompts": 30.4,
|
8 |
+
"OCR": 20.2,
|
9 |
+
"Average": 25.3
|
10 |
+
},
|
11 |
+
"dreamlike-photoreal-2.0": {
|
12 |
+
"Natural Selection": 17.2,
|
13 |
+
"Distraction": 37.8,
|
14 |
+
"Counterfactual Reasoning": 15.3,
|
15 |
+
"Co-occurrence": 34.3,
|
16 |
+
"Misleading Prompts": 32.0,
|
17 |
+
"OCR": 26.0,
|
18 |
+
"Average": 27.1
|
19 |
+
},
|
20 |
+
"openjourney-v4": {
|
21 |
+
"Natural Selection": 16.5,
|
22 |
+
"Distraction": 39.3,
|
23 |
+
"Counterfactual Reasoning": 16.3,
|
24 |
+
"Co-occurrence": 31.3,
|
25 |
+
"Misleading Prompts": 28.4,
|
26 |
+
"OCR": 29.6,
|
27 |
+
"Average": 26.9
|
28 |
+
},
|
29 |
+
"IF-I-M-v1.0": {
|
30 |
+
"Natural Selection": 21.5,
|
31 |
+
"Distraction": 40.8,
|
32 |
+
"Counterfactual Reasoning": 20.2,
|
33 |
+
"Co-occurrence": 31.8,
|
34 |
+
"Misleading Prompts": 30.6,
|
35 |
+
"OCR": 12.4,
|
36 |
+
"Average": 26.2
|
37 |
+
},
|
38 |
+
"dall-e-2": {
|
39 |
+
"Natural Selection": 23.6,
|
40 |
+
"Distraction": 43.8,
|
41 |
+
"Counterfactual Reasoning": 18.1,
|
42 |
+
"Co-occurrence": 41.9,
|
43 |
+
"Misleading Prompts": 29.2,
|
44 |
+
"OCR": 11.2,
|
45 |
+
"Average": 28.0
|
46 |
+
},
|
47 |
+
"dall-e-3": {
|
48 |
+
"Natural Selection": 33.4,
|
49 |
+
"Distraction": 54.3,
|
50 |
+
"Counterfactual Reasoning": 33.5,
|
51 |
+
"Co-occurrence": 43.9,
|
52 |
+
"Misleading Prompts": 45.8,
|
53 |
+
"OCR": 21.2,
|
54 |
+
"Average": 38.7
|
55 |
+
}
|
56 |
+
}
|
data/results/ood_i2t_summary.json
ADDED
@@ -0,0 +1,638 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"llava-v1.6-mistral-7b-hf": {
|
3 |
+
"identification": {
|
4 |
+
"pixelate": {
|
5 |
+
"Score": 55.00000000000001,
|
6 |
+
"Original Score": 85.0
|
7 |
+
},
|
8 |
+
"Van_Gogh": {
|
9 |
+
"Score": 55.00000000000001,
|
10 |
+
"Original Score": 75.0
|
11 |
+
},
|
12 |
+
"oil_painting": {
|
13 |
+
"Score": 45.0,
|
14 |
+
"Original Score": 70.0
|
15 |
+
},
|
16 |
+
"watercolour_painting": {
|
17 |
+
"Score": 65.0,
|
18 |
+
"Original Score": 77.5
|
19 |
+
},
|
20 |
+
"zoom_blur": {
|
21 |
+
"Score": 50.0,
|
22 |
+
"Original Score": 75.0
|
23 |
+
},
|
24 |
+
"gaussian_noise": {
|
25 |
+
"Score": 57.49999999999999,
|
26 |
+
"Original Score": 80.0
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"attribute": {
|
30 |
+
"pixelate": {
|
31 |
+
"Score": 45.0,
|
32 |
+
"Original Score": 80.0
|
33 |
+
},
|
34 |
+
"Van_Gogh": {
|
35 |
+
"Score": 30.0,
|
36 |
+
"Original Score": 77.5
|
37 |
+
},
|
38 |
+
"oil_painting": {
|
39 |
+
"Score": 42.5,
|
40 |
+
"Original Score": 75.0
|
41 |
+
},
|
42 |
+
"watercolour_painting": {
|
43 |
+
"Score": 55.00000000000001,
|
44 |
+
"Original Score": 72.5
|
45 |
+
},
|
46 |
+
"zoom_blur": {
|
47 |
+
"Score": 57.49999999999999,
|
48 |
+
"Original Score": 72.5
|
49 |
+
},
|
50 |
+
"gaussian_noise": {
|
51 |
+
"Score": 55.00000000000001,
|
52 |
+
"Original Score": 77.5
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"count": {
|
56 |
+
"pixelate": {
|
57 |
+
"Score": 20.0,
|
58 |
+
"Original Score": 62.5
|
59 |
+
},
|
60 |
+
"Van_Gogh": {
|
61 |
+
"Score": 6.25,
|
62 |
+
"Original Score": 62.5
|
63 |
+
},
|
64 |
+
"oil_painting": {
|
65 |
+
"Score": 16.666666666666664,
|
66 |
+
"Original Score": 64.28571428571429
|
67 |
+
},
|
68 |
+
"watercolour_painting": {
|
69 |
+
"Score": 23.333333333333332,
|
70 |
+
"Original Score": 60.0
|
71 |
+
},
|
72 |
+
"zoom_blur": {
|
73 |
+
"Score": 7.5,
|
74 |
+
"Original Score": 65.0
|
75 |
+
},
|
76 |
+
"gaussian_noise": {
|
77 |
+
"Score": 12.5,
|
78 |
+
"Original Score": 60.0
|
79 |
+
}
|
80 |
+
},
|
81 |
+
"spatial": {
|
82 |
+
"pixelate": {
|
83 |
+
"Score": 25.0,
|
84 |
+
"Original Score": 80.0
|
85 |
+
},
|
86 |
+
"Van_Gogh": {
|
87 |
+
"Score": 37.5,
|
88 |
+
"Original Score": 72.5
|
89 |
+
},
|
90 |
+
"oil_painting": {
|
91 |
+
"Score": 12.5,
|
92 |
+
"Original Score": 75.0
|
93 |
+
},
|
94 |
+
"watercolour_painting": {
|
95 |
+
"Score": 32.5,
|
96 |
+
"Original Score": 72.5
|
97 |
+
},
|
98 |
+
"zoom_blur": {
|
99 |
+
"Score": 17.5,
|
100 |
+
"Original Score": 72.5
|
101 |
+
},
|
102 |
+
"gaussian_noise": {
|
103 |
+
"Score": 20.0,
|
104 |
+
"Original Score": 75.0
|
105 |
+
}
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"Qwen-VL-Chat": {
|
109 |
+
"identification": {
|
110 |
+
"pixelate": {
|
111 |
+
"Score": 12.5,
|
112 |
+
"Original Score": 90.0
|
113 |
+
},
|
114 |
+
"Van_Gogh": {
|
115 |
+
"Score": 45.0,
|
116 |
+
"Original Score": 90.0
|
117 |
+
},
|
118 |
+
"oil_painting": {
|
119 |
+
"Score": 45.0,
|
120 |
+
"Original Score": 82.5
|
121 |
+
},
|
122 |
+
"watercolour_painting": {
|
123 |
+
"Score": 42.5,
|
124 |
+
"Original Score": 90.0
|
125 |
+
},
|
126 |
+
"zoom_blur": {
|
127 |
+
"Score": 40.0,
|
128 |
+
"Original Score": 82.5
|
129 |
+
},
|
130 |
+
"gaussian_noise": {
|
131 |
+
"Score": 40.0,
|
132 |
+
"Original Score": 90.0
|
133 |
+
}
|
134 |
+
},
|
135 |
+
"attribute": {
|
136 |
+
"pixelate": {
|
137 |
+
"Score": 30.0,
|
138 |
+
"Original Score": 85.0
|
139 |
+
},
|
140 |
+
"Van_Gogh": {
|
141 |
+
"Score": 20.0,
|
142 |
+
"Original Score": 82.5
|
143 |
+
},
|
144 |
+
"oil_painting": {
|
145 |
+
"Score": 27.500000000000004,
|
146 |
+
"Original Score": 77.5
|
147 |
+
},
|
148 |
+
"watercolour_painting": {
|
149 |
+
"Score": 27.500000000000004,
|
150 |
+
"Original Score": 90.0
|
151 |
+
},
|
152 |
+
"zoom_blur": {
|
153 |
+
"Score": 25.0,
|
154 |
+
"Original Score": 90.0
|
155 |
+
},
|
156 |
+
"gaussian_noise": {
|
157 |
+
"Score": 32.5,
|
158 |
+
"Original Score": 70.0
|
159 |
+
}
|
160 |
+
},
|
161 |
+
"count": {
|
162 |
+
"pixelate": {
|
163 |
+
"Score": 10.0,
|
164 |
+
"Original Score": 50.0
|
165 |
+
},
|
166 |
+
"Van_Gogh": {
|
167 |
+
"Score": 8.333333333333332,
|
168 |
+
"Original Score": 47.91666666666667
|
169 |
+
},
|
170 |
+
"oil_painting": {
|
171 |
+
"Score": 16.666666666666664,
|
172 |
+
"Original Score": 50.0
|
173 |
+
},
|
174 |
+
"watercolour_painting": {
|
175 |
+
"Score": 13.333333333333334,
|
176 |
+
"Original Score": 53.333333333333336
|
177 |
+
},
|
178 |
+
"zoom_blur": {
|
179 |
+
"Score": 12.5,
|
180 |
+
"Original Score": 47.5
|
181 |
+
},
|
182 |
+
"gaussian_noise": {
|
183 |
+
"Score": 15.0,
|
184 |
+
"Original Score": 47.5
|
185 |
+
}
|
186 |
+
},
|
187 |
+
"spatial": {
|
188 |
+
"pixelate": {
|
189 |
+
"Score": 32.5,
|
190 |
+
"Original Score": 85.0
|
191 |
+
},
|
192 |
+
"Van_Gogh": {
|
193 |
+
"Score": 22.5,
|
194 |
+
"Original Score": 67.5
|
195 |
+
},
|
196 |
+
"oil_painting": {
|
197 |
+
"Score": 32.5,
|
198 |
+
"Original Score": 55.00000000000001
|
199 |
+
},
|
200 |
+
"watercolour_painting": {
|
201 |
+
"Score": 20.0,
|
202 |
+
"Original Score": 65.0
|
203 |
+
},
|
204 |
+
"zoom_blur": {
|
205 |
+
"Score": 32.5,
|
206 |
+
"Original Score": 77.5
|
207 |
+
},
|
208 |
+
"gaussian_noise": {
|
209 |
+
"Score": 25.0,
|
210 |
+
"Original Score": 77.5
|
211 |
+
}
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"instructblip-vicuna-7b": {
|
215 |
+
"identification": {
|
216 |
+
"Van_Gogh": {
|
217 |
+
"Score": 32.5,
|
218 |
+
"Original Score": 77.5
|
219 |
+
},
|
220 |
+
"oil_painting": {
|
221 |
+
"Score": 27.500000000000004,
|
222 |
+
"Original Score": 87.5
|
223 |
+
},
|
224 |
+
"watercolour_painting": {
|
225 |
+
"Score": 35.0,
|
226 |
+
"Original Score": 80.0
|
227 |
+
},
|
228 |
+
"zoom_blur": {
|
229 |
+
"Score": 40.0,
|
230 |
+
"Original Score": 82.5
|
231 |
+
},
|
232 |
+
"gaussian_noise": {
|
233 |
+
"Score": 52.5,
|
234 |
+
"Original Score": 85.0
|
235 |
+
},
|
236 |
+
"pixelate": {
|
237 |
+
"Score": 52.5,
|
238 |
+
"Original Score": 72.5
|
239 |
+
}
|
240 |
+
},
|
241 |
+
"attribute": {
|
242 |
+
"Van_Gogh": {
|
243 |
+
"Score": 15.0,
|
244 |
+
"Original Score": 45.0
|
245 |
+
},
|
246 |
+
"oil_painting": {
|
247 |
+
"Score": 20.0,
|
248 |
+
"Original Score": 52.5
|
249 |
+
},
|
250 |
+
"watercolour_painting": {
|
251 |
+
"Score": 25.0,
|
252 |
+
"Original Score": 52.5
|
253 |
+
},
|
254 |
+
"zoom_blur": {
|
255 |
+
"Score": 17.5,
|
256 |
+
"Original Score": 40.0
|
257 |
+
},
|
258 |
+
"gaussian_noise": {
|
259 |
+
"Score": 27.500000000000004,
|
260 |
+
"Original Score": 55.00000000000001
|
261 |
+
},
|
262 |
+
"pixelate": {
|
263 |
+
"Score": 12.5,
|
264 |
+
"Original Score": 47.5
|
265 |
+
}
|
266 |
+
},
|
267 |
+
"count": {
|
268 |
+
"Van_Gogh": {
|
269 |
+
"Score": 6.25,
|
270 |
+
"Original Score": 29.166666666666668
|
271 |
+
},
|
272 |
+
"oil_painting": {
|
273 |
+
"Score": 16.666666666666664,
|
274 |
+
"Original Score": 38.095238095238095
|
275 |
+
},
|
276 |
+
"watercolour_painting": {
|
277 |
+
"Score": 13.333333333333334,
|
278 |
+
"Original Score": 33.33333333333333
|
279 |
+
},
|
280 |
+
"zoom_blur": {
|
281 |
+
"Score": 10.0,
|
282 |
+
"Original Score": 32.5
|
283 |
+
},
|
284 |
+
"gaussian_noise": {
|
285 |
+
"Score": 12.5,
|
286 |
+
"Original Score": 27.500000000000004
|
287 |
+
},
|
288 |
+
"pixelate": {
|
289 |
+
"Score": 5.0,
|
290 |
+
"Original Score": 27.500000000000004
|
291 |
+
}
|
292 |
+
},
|
293 |
+
"spatial": {
|
294 |
+
"Van_Gogh": {
|
295 |
+
"Score": 7.5,
|
296 |
+
"Original Score": 22.5
|
297 |
+
},
|
298 |
+
"oil_painting": {
|
299 |
+
"Score": 10.0,
|
300 |
+
"Original Score": 22.5
|
301 |
+
},
|
302 |
+
"watercolour_painting": {
|
303 |
+
"Score": 7.5,
|
304 |
+
"Original Score": 20.0
|
305 |
+
},
|
306 |
+
"zoom_blur": {
|
307 |
+
"Score": 10.0,
|
308 |
+
"Original Score": 10.0
|
309 |
+
},
|
310 |
+
"gaussian_noise": {
|
311 |
+
"Score": 7.5,
|
312 |
+
"Original Score": 15.0
|
313 |
+
},
|
314 |
+
"pixelate": {
|
315 |
+
"Score": 0.0,
|
316 |
+
"Original Score": 7.5
|
317 |
+
}
|
318 |
+
}
|
319 |
+
},
|
320 |
+
"gpt-4-vision-preview": {
|
321 |
+
"identification": {
|
322 |
+
"Van_Gogh": {
|
323 |
+
"Score": 65.0,
|
324 |
+
"Original Score": 80.0
|
325 |
+
},
|
326 |
+
"oil_painting": {
|
327 |
+
"Score": 52.5,
|
328 |
+
"Original Score": 75.0
|
329 |
+
},
|
330 |
+
"watercolour_painting": {
|
331 |
+
"Score": 62.5,
|
332 |
+
"Original Score": 82.5
|
333 |
+
},
|
334 |
+
"zoom_blur": {
|
335 |
+
"Score": 50.0,
|
336 |
+
"Original Score": 82.5
|
337 |
+
},
|
338 |
+
"gaussian_noise": {
|
339 |
+
"Score": 75.0,
|
340 |
+
"Original Score": 87.5
|
341 |
+
},
|
342 |
+
"pixelate": {
|
343 |
+
"Score": 50.0,
|
344 |
+
"Original Score": 67.5
|
345 |
+
}
|
346 |
+
},
|
347 |
+
"attribute": {
|
348 |
+
"Van_Gogh": {
|
349 |
+
"Score": 47.5,
|
350 |
+
"Original Score": 82.5
|
351 |
+
},
|
352 |
+
"oil_painting": {
|
353 |
+
"Score": 52.5,
|
354 |
+
"Original Score": 62.5
|
355 |
+
},
|
356 |
+
"watercolour_painting": {
|
357 |
+
"Score": 57.49999999999999,
|
358 |
+
"Original Score": 67.5
|
359 |
+
},
|
360 |
+
"zoom_blur": {
|
361 |
+
"Score": 32.5,
|
362 |
+
"Original Score": 70.0
|
363 |
+
},
|
364 |
+
"gaussian_noise": {
|
365 |
+
"Score": 60.0,
|
366 |
+
"Original Score": 65.0
|
367 |
+
},
|
368 |
+
"pixelate": {
|
369 |
+
"Score": 57.49999999999999,
|
370 |
+
"Original Score": 67.5
|
371 |
+
}
|
372 |
+
},
|
373 |
+
"count": {
|
374 |
+
"Van_Gogh": {
|
375 |
+
"Score": 8.333333333333332,
|
376 |
+
"Original Score": 20.833333333333336
|
377 |
+
},
|
378 |
+
"oil_painting": {
|
379 |
+
"Score": 11.904761904761903,
|
380 |
+
"Original Score": 11.904761904761903
|
381 |
+
},
|
382 |
+
"watercolour_painting": {
|
383 |
+
"Score": 26.666666666666668,
|
384 |
+
"Original Score": 20.0
|
385 |
+
},
|
386 |
+
"zoom_blur": {
|
387 |
+
"Score": 0.0,
|
388 |
+
"Original Score": 17.5
|
389 |
+
},
|
390 |
+
"gaussian_noise": {
|
391 |
+
"Score": 10.0,
|
392 |
+
"Original Score": 17.5
|
393 |
+
},
|
394 |
+
"pixelate": {
|
395 |
+
"Score": 5.0,
|
396 |
+
"Original Score": 20.0
|
397 |
+
}
|
398 |
+
},
|
399 |
+
"spatial": {
|
400 |
+
"Van_Gogh": {
|
401 |
+
"Score": 32.5,
|
402 |
+
"Original Score": 37.5
|
403 |
+
},
|
404 |
+
"oil_painting": {
|
405 |
+
"Score": 22.5,
|
406 |
+
"Original Score": 32.5
|
407 |
+
},
|
408 |
+
"watercolour_painting": {
|
409 |
+
"Score": 35.0,
|
410 |
+
"Original Score": 35.0
|
411 |
+
},
|
412 |
+
"zoom_blur": {
|
413 |
+
"Score": 12.5,
|
414 |
+
"Original Score": 37.5
|
415 |
+
},
|
416 |
+
"gaussian_noise": {
|
417 |
+
"Score": 27.500000000000004,
|
418 |
+
"Original Score": 30.0
|
419 |
+
},
|
420 |
+
"pixelate": {
|
421 |
+
"Score": 30.0,
|
422 |
+
"Original Score": 47.5
|
423 |
+
}
|
424 |
+
}
|
425 |
+
},
|
426 |
+
"gpt-4o-2024-05-13": {
|
427 |
+
"identification": {
|
428 |
+
"Van_Gogh": {
|
429 |
+
"Score": 65.0,
|
430 |
+
"Original Score": 75.0
|
431 |
+
},
|
432 |
+
"oil_painting": {
|
433 |
+
"Score": 67.5,
|
434 |
+
"Original Score": 75.0
|
435 |
+
},
|
436 |
+
"watercolour_painting": {
|
437 |
+
"Score": 80.0,
|
438 |
+
"Original Score": 77.5
|
439 |
+
},
|
440 |
+
"zoom_blur": {
|
441 |
+
"Score": 65.0,
|
442 |
+
"Original Score": 85.0
|
443 |
+
},
|
444 |
+
"gaussian_noise": {
|
445 |
+
"Score": 87.5,
|
446 |
+
"Original Score": 85.0
|
447 |
+
},
|
448 |
+
"pixelate": {
|
449 |
+
"Score": 55.00000000000001,
|
450 |
+
"Original Score": 70.0
|
451 |
+
}
|
452 |
+
},
|
453 |
+
"attribute": {
|
454 |
+
"Van_Gogh": {
|
455 |
+
"Score": 50.0,
|
456 |
+
"Original Score": 67.5
|
457 |
+
},
|
458 |
+
"oil_painting": {
|
459 |
+
"Score": 57.49999999999999,
|
460 |
+
"Original Score": 60.0
|
461 |
+
},
|
462 |
+
"watercolour_painting": {
|
463 |
+
"Score": 52.5,
|
464 |
+
"Original Score": 57.49999999999999
|
465 |
+
},
|
466 |
+
"zoom_blur": {
|
467 |
+
"Score": 60.0,
|
468 |
+
"Original Score": 75.0
|
469 |
+
},
|
470 |
+
"gaussian_noise": {
|
471 |
+
"Score": 55.00000000000001,
|
472 |
+
"Original Score": 60.0
|
473 |
+
},
|
474 |
+
"pixelate": {
|
475 |
+
"Score": 55.00000000000001,
|
476 |
+
"Original Score": 57.49999999999999
|
477 |
+
}
|
478 |
+
},
|
479 |
+
"count": {
|
480 |
+
"Van_Gogh": {
|
481 |
+
"Score": 29.166666666666668,
|
482 |
+
"Original Score": 43.75
|
483 |
+
},
|
484 |
+
"oil_painting": {
|
485 |
+
"Score": 28.57142857142857,
|
486 |
+
"Original Score": 45.23809523809524
|
487 |
+
},
|
488 |
+
"watercolour_painting": {
|
489 |
+
"Score": 30.0,
|
490 |
+
"Original Score": 46.666666666666664
|
491 |
+
},
|
492 |
+
"zoom_blur": {
|
493 |
+
"Score": 12.5,
|
494 |
+
"Original Score": 47.5
|
495 |
+
},
|
496 |
+
"gaussian_noise": {
|
497 |
+
"Score": 35.0,
|
498 |
+
"Original Score": 40.0
|
499 |
+
},
|
500 |
+
"pixelate": {
|
501 |
+
"Score": 20.0,
|
502 |
+
"Original Score": 45.0
|
503 |
+
}
|
504 |
+
},
|
505 |
+
"spatial": {
|
506 |
+
"Van_Gogh": {
|
507 |
+
"Score": 57.49999999999999,
|
508 |
+
"Original Score": 62.5
|
509 |
+
},
|
510 |
+
"oil_painting": {
|
511 |
+
"Score": 55.00000000000001,
|
512 |
+
"Original Score": 57.49999999999999
|
513 |
+
},
|
514 |
+
"watercolour_painting": {
|
515 |
+
"Score": 60.0,
|
516 |
+
"Original Score": 57.49999999999999
|
517 |
+
},
|
518 |
+
"zoom_blur": {
|
519 |
+
"Score": 47.5,
|
520 |
+
"Original Score": 62.5
|
521 |
+
},
|
522 |
+
"gaussian_noise": {
|
523 |
+
"Score": 65.0,
|
524 |
+
"Original Score": 57.49999999999999
|
525 |
+
},
|
526 |
+
"pixelate": {
|
527 |
+
"Score": 50.0,
|
528 |
+
"Original Score": 65.0
|
529 |
+
}
|
530 |
+
}
|
531 |
+
},
|
532 |
+
"llava-v1.6-vicuna-7b-hf": {
|
533 |
+
"identification": {
|
534 |
+
"Van_Gogh": {
|
535 |
+
"Score": 57.49999999999999,
|
536 |
+
"Original Score": 77.5
|
537 |
+
},
|
538 |
+
"oil_painting": {
|
539 |
+
"Score": 52.5,
|
540 |
+
"Original Score": 70.0
|
541 |
+
},
|
542 |
+
"watercolour_painting": {
|
543 |
+
"Score": 75.0,
|
544 |
+
"Original Score": 77.5
|
545 |
+
},
|
546 |
+
"zoom_blur": {
|
547 |
+
"Score": 55.00000000000001,
|
548 |
+
"Original Score": 80.0
|
549 |
+
},
|
550 |
+
"gaussian_noise": {
|
551 |
+
"Score": 70.0,
|
552 |
+
"Original Score": 82.5
|
553 |
+
},
|
554 |
+
"pixelate": {
|
555 |
+
"Score": 52.5,
|
556 |
+
"Original Score": 75.0
|
557 |
+
}
|
558 |
+
},
|
559 |
+
"attribute": {
|
560 |
+
"Van_Gogh": {
|
561 |
+
"Score": 45.0,
|
562 |
+
"Original Score": 82.5
|
563 |
+
},
|
564 |
+
"oil_painting": {
|
565 |
+
"Score": 70.0,
|
566 |
+
"Original Score": 72.5
|
567 |
+
},
|
568 |
+
"watercolour_painting": {
|
569 |
+
"Score": 55.00000000000001,
|
570 |
+
"Original Score": 77.5
|
571 |
+
},
|
572 |
+
"zoom_blur": {
|
573 |
+
"Score": 60.0,
|
574 |
+
"Original Score": 75.0
|
575 |
+
},
|
576 |
+
"gaussian_noise": {
|
577 |
+
"Score": 57.49999999999999,
|
578 |
+
"Original Score": 67.5
|
579 |
+
},
|
580 |
+
"pixelate": {
|
581 |
+
"Score": 50.0,
|
582 |
+
"Original Score": 65.0
|
583 |
+
}
|
584 |
+
},
|
585 |
+
"count": {
|
586 |
+
"Van_Gogh": {
|
587 |
+
"Score": 22.916666666666664,
|
588 |
+
"Original Score": 31.25
|
589 |
+
},
|
590 |
+
"oil_painting": {
|
591 |
+
"Score": 21.428571428571427,
|
592 |
+
"Original Score": 26.190476190476193
|
593 |
+
},
|
594 |
+
"watercolour_painting": {
|
595 |
+
"Score": 13.333333333333334,
|
596 |
+
"Original Score": 16.666666666666664
|
597 |
+
},
|
598 |
+
"zoom_blur": {
|
599 |
+
"Score": 12.5,
|
600 |
+
"Original Score": 27.500000000000004
|
601 |
+
},
|
602 |
+
"gaussian_noise": {
|
603 |
+
"Score": 20.0,
|
604 |
+
"Original Score": 22.5
|
605 |
+
},
|
606 |
+
"pixelate": {
|
607 |
+
"Score": 20.0,
|
608 |
+
"Original Score": 17.5
|
609 |
+
}
|
610 |
+
},
|
611 |
+
"spatial": {
|
612 |
+
"Van_Gogh": {
|
613 |
+
"Score": 22.5,
|
614 |
+
"Original Score": 32.5
|
615 |
+
},
|
616 |
+
"oil_painting": {
|
617 |
+
"Score": 32.5,
|
618 |
+
"Original Score": 27.500000000000004
|
619 |
+
},
|
620 |
+
"watercolour_painting": {
|
621 |
+
"Score": 30.0,
|
622 |
+
"Original Score": 27.500000000000004
|
623 |
+
},
|
624 |
+
"zoom_blur": {
|
625 |
+
"Score": 27.500000000000004,
|
626 |
+
"Original Score": 30.0
|
627 |
+
},
|
628 |
+
"gaussian_noise": {
|
629 |
+
"Score": 30.0,
|
630 |
+
"Original Score": 27.500000000000004
|
631 |
+
},
|
632 |
+
"pixelate": {
|
633 |
+
"Score": 15.0,
|
634 |
+
"Original Score": 22.5
|
635 |
+
}
|
636 |
+
}
|
637 |
+
}
|
638 |
+
}
|
data/results/ood_t2i_summary.json
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dall-e-3": {
|
3 |
+
"trial_2": {
|
4 |
+
"spatial": {
|
5 |
+
"Paraphrase_": 28.000000000000004,
|
6 |
+
"paraphrase_original": 56.99999999999999,
|
7 |
+
"Shake_": 36.0,
|
8 |
+
"shake_original": 51.0
|
9 |
+
},
|
10 |
+
"fidelity": {
|
11 |
+
"Shake_": 0.764915771484375,
|
12 |
+
"shake_original": 0.8701418481691919,
|
13 |
+
"Paraphrase_": 0.77125244140625,
|
14 |
+
"paraphrase_original": 0.8577252012310606
|
15 |
+
},
|
16 |
+
"size": {
|
17 |
+
"Shake_": 57.99999999999999,
|
18 |
+
"shake_original": 86.0,
|
19 |
+
"Paraphrase_": 60.0,
|
20 |
+
"paraphrase_original": 74.0
|
21 |
+
},
|
22 |
+
"color": {
|
23 |
+
"Shake_": 76.0,
|
24 |
+
"shake_original": 90.0,
|
25 |
+
"Paraphrase_": 46.0,
|
26 |
+
"paraphrase_original": 80.0
|
27 |
+
},
|
28 |
+
"counting": {
|
29 |
+
"Shake_": 53.0,
|
30 |
+
"shake_original": 64.0,
|
31 |
+
"Paraphrase_": 56.99999999999999,
|
32 |
+
"paraphrase_original": 66.0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"trial_0": {
|
36 |
+
"fidelity": {
|
37 |
+
"Shake_": 0.765079345703125,
|
38 |
+
"shake_original": 0.8692822265625,
|
39 |
+
"Paraphrase_": 0.77125244140625,
|
40 |
+
"paraphrase_original": 0.8577252012310606
|
41 |
+
},
|
42 |
+
"size": {
|
43 |
+
"Shake_": 60.0,
|
44 |
+
"shake_original": 80.0,
|
45 |
+
"Paraphrase_": 66.0,
|
46 |
+
"paraphrase_original": 74.0
|
47 |
+
},
|
48 |
+
"color": {
|
49 |
+
"Shake_": 74.0,
|
50 |
+
"shake_original": 92.0,
|
51 |
+
"Paraphrase_": 52.0,
|
52 |
+
"paraphrase_original": 86.0
|
53 |
+
},
|
54 |
+
"counting": {
|
55 |
+
"Shake_": 56.99999999999999,
|
56 |
+
"shake_original": 60.0,
|
57 |
+
"Paraphrase_": 57.99999999999999,
|
58 |
+
"paraphrase_original": 57.99999999999999
|
59 |
+
},
|
60 |
+
"spatial": {
|
61 |
+
"Shake_": 46.0,
|
62 |
+
"shake_original": 54.0,
|
63 |
+
"Paraphrase_": 41.0,
|
64 |
+
"paraphrase_original": 57.99999999999999
|
65 |
+
}
|
66 |
+
},
|
67 |
+
"trial_1": {
|
68 |
+
"fidelity": {
|
69 |
+
"Shake_": 0.765079345703125,
|
70 |
+
"shake_original": 0.8725336814413265,
|
71 |
+
"Paraphrase_": 0.77125244140625,
|
72 |
+
"paraphrase_original": 0.8577252012310606
|
73 |
+
},
|
74 |
+
"size": {
|
75 |
+
"Shake_": 62.0,
|
76 |
+
"shake_original": 74.0,
|
77 |
+
"Paraphrase_": 66.0,
|
78 |
+
"paraphrase_original": 62.0
|
79 |
+
},
|
80 |
+
"color": {
|
81 |
+
"Shake_": 60.0,
|
82 |
+
"shake_original": 82.0,
|
83 |
+
"Paraphrase_": 52.0,
|
84 |
+
"paraphrase_original": 88.0
|
85 |
+
},
|
86 |
+
"counting": {
|
87 |
+
"Shake_": 56.99999999999999,
|
88 |
+
"shake_original": 60.0,
|
89 |
+
"Paraphrase_": 56.00000000000001,
|
90 |
+
"paraphrase_original": 57.99999999999999
|
91 |
+
},
|
92 |
+
"spatial": {
|
93 |
+
"Shake_": 38.0,
|
94 |
+
"shake_original": 57.99999999999999,
|
95 |
+
"Paraphrase_": 38.0,
|
96 |
+
"paraphrase_original": 51.0
|
97 |
+
}
|
98 |
+
}
|
99 |
+
},
|
100 |
+
"IF-I-M-v1.0": {
|
101 |
+
"trial_0": {
|
102 |
+
"fidelity": {
|
103 |
+
"Shake_": 0.736375732421875,
|
104 |
+
"shake_original": 0.8414306640625,
|
105 |
+
"Paraphrase_": 0.75791748046875,
|
106 |
+
"paraphrase_original": 0.8354833984375
|
107 |
+
},
|
108 |
+
"size": {
|
109 |
+
"Shake_": 24.0,
|
110 |
+
"shake_original": 34.0,
|
111 |
+
"Paraphrase_": 22.0,
|
112 |
+
"paraphrase_original": 34.0
|
113 |
+
},
|
114 |
+
"color": {
|
115 |
+
"Shake_": 10.0,
|
116 |
+
"shake_original": 28.000000000000004,
|
117 |
+
"Paraphrase_": 8.0,
|
118 |
+
"paraphrase_original": 26.0
|
119 |
+
},
|
120 |
+
"counting": {
|
121 |
+
"Shake_": 49.0,
|
122 |
+
"shake_original": 59.0,
|
123 |
+
"Paraphrase_": 53.0,
|
124 |
+
"paraphrase_original": 55.00000000000001
|
125 |
+
},
|
126 |
+
"spatial": {
|
127 |
+
"Shake_": 12.0,
|
128 |
+
"shake_original": 13.0,
|
129 |
+
"Paraphrase_": 12.0,
|
130 |
+
"paraphrase_original": 16.0
|
131 |
+
}
|
132 |
+
},
|
133 |
+
"trial_1": {
|
134 |
+
"fidelity": {
|
135 |
+
"Shake_": 0.736375732421875,
|
136 |
+
"shake_original": 0.8414306640625,
|
137 |
+
"Paraphrase_": 0.75791748046875,
|
138 |
+
"paraphrase_original": 0.8354833984375
|
139 |
+
},
|
140 |
+
"size": {
|
141 |
+
"Shake_": 20.0,
|
142 |
+
"shake_original": 34.0,
|
143 |
+
"Paraphrase_": 18.0,
|
144 |
+
"paraphrase_original": 34.0
|
145 |
+
},
|
146 |
+
"color": {
|
147 |
+
"Shake_": 18.0,
|
148 |
+
"shake_original": 32.0,
|
149 |
+
"Paraphrase_": 8.0,
|
150 |
+
"paraphrase_original": 12.0
|
151 |
+
},
|
152 |
+
"counting": {
|
153 |
+
"Shake_": 54.0,
|
154 |
+
"shake_original": 60.0,
|
155 |
+
"Paraphrase_": 44.0,
|
156 |
+
"paraphrase_original": 56.99999999999999
|
157 |
+
},
|
158 |
+
"spatial": {
|
159 |
+
"Shake_": 9.0,
|
160 |
+
"shake_original": 18.0,
|
161 |
+
"Paraphrase_": 12.0,
|
162 |
+
"paraphrase_original": 16.0
|
163 |
+
}
|
164 |
+
},
|
165 |
+
"trial_2": {
|
166 |
+
"fidelity": {
|
167 |
+
"Shake_": 0.736375732421875,
|
168 |
+
"shake_original": 0.8414306640625,
|
169 |
+
"Paraphrase_": 0.75791748046875,
|
170 |
+
"paraphrase_original": 0.8354833984375
|
171 |
+
},
|
172 |
+
"size": {
|
173 |
+
"Shake_": 16.0,
|
174 |
+
"shake_original": 26.0,
|
175 |
+
"Paraphrase_": 10.0,
|
176 |
+
"paraphrase_original": 22.0
|
177 |
+
},
|
178 |
+
"color": {
|
179 |
+
"Shake_": 28.000000000000004,
|
180 |
+
"shake_original": 20.0,
|
181 |
+
"Paraphrase_": 8.0,
|
182 |
+
"paraphrase_original": 8.0
|
183 |
+
},
|
184 |
+
"counting": {
|
185 |
+
"Shake_": 51.0,
|
186 |
+
"shake_original": 61.0,
|
187 |
+
"Paraphrase_": 52.0,
|
188 |
+
"paraphrase_original": 60.0
|
189 |
+
},
|
190 |
+
"spatial": {
|
191 |
+
"Shake_": 8.0,
|
192 |
+
"shake_original": 11.0,
|
193 |
+
"Paraphrase_": 18.0,
|
194 |
+
"paraphrase_original": 15.0
|
195 |
+
}
|
196 |
+
}
|
197 |
+
},
|
198 |
+
"dreamlike-photoreal-2.0": {
|
199 |
+
"trial_0": {
|
200 |
+
"fidelity": {
|
201 |
+
"Shake_": 0.680771484375,
|
202 |
+
"shake_original": 0.878603515625,
|
203 |
+
"Paraphrase_": 0.7633154296875,
|
204 |
+
"paraphrase_original": 0.86765625
|
205 |
+
},
|
206 |
+
"size": {
|
207 |
+
"Shake_": 6.0,
|
208 |
+
"shake_original": 16.0,
|
209 |
+
"Paraphrase_": 4.0,
|
210 |
+
"paraphrase_original": 24.0
|
211 |
+
},
|
212 |
+
"color": {
|
213 |
+
"Shake_": 22.0,
|
214 |
+
"shake_original": 36.0,
|
215 |
+
"Paraphrase_": 6.0,
|
216 |
+
"paraphrase_original": 26.0
|
217 |
+
},
|
218 |
+
"counting": {
|
219 |
+
"Shake_": 33.0,
|
220 |
+
"shake_original": 41.0,
|
221 |
+
"Paraphrase_": 34.0,
|
222 |
+
"paraphrase_original": 39.0
|
223 |
+
},
|
224 |
+
"spatial": {
|
225 |
+
"Shake_": 9.0,
|
226 |
+
"shake_original": 13.0,
|
227 |
+
"Paraphrase_": 11.0,
|
228 |
+
"paraphrase_original": 18.0
|
229 |
+
}
|
230 |
+
},
|
231 |
+
"trial_1": {
|
232 |
+
"fidelity": {
|
233 |
+
"Shake_": 0.680775146484375,
|
234 |
+
"shake_original": 0.878603515625,
|
235 |
+
"Paraphrase_": 0.76329833984375,
|
236 |
+
"paraphrase_original": 0.86765625
|
237 |
+
},
|
238 |
+
"size": {
|
239 |
+
"Shake_": 8.0,
|
240 |
+
"shake_original": 24.0,
|
241 |
+
"Paraphrase_": 14.000000000000002,
|
242 |
+
"paraphrase_original": 26.0
|
243 |
+
},
|
244 |
+
"color": {
|
245 |
+
"Shake_": 18.0,
|
246 |
+
"shake_original": 36.0,
|
247 |
+
"Paraphrase_": 8.0,
|
248 |
+
"paraphrase_original": 28.000000000000004
|
249 |
+
},
|
250 |
+
"counting": {
|
251 |
+
"Shake_": 22.0,
|
252 |
+
"shake_original": 47.0,
|
253 |
+
"Paraphrase_": 41.0,
|
254 |
+
"paraphrase_original": 41.0
|
255 |
+
},
|
256 |
+
"spatial": {
|
257 |
+
"Shake_": 5.0,
|
258 |
+
"shake_original": 15.0,
|
259 |
+
"Paraphrase_": 6.0,
|
260 |
+
"paraphrase_original": 16.0
|
261 |
+
}
|
262 |
+
},
|
263 |
+
"trial_2": {
|
264 |
+
"fidelity": {
|
265 |
+
"Shake_": 0.680775146484375,
|
266 |
+
"shake_original": 0.878603515625,
|
267 |
+
"Paraphrase_": 0.76329833984375,
|
268 |
+
"paraphrase_original": 0.86765625
|
269 |
+
},
|
270 |
+
"size": {
|
271 |
+
"Shake_": 4.0,
|
272 |
+
"shake_original": 28.000000000000004,
|
273 |
+
"Paraphrase_": 10.0,
|
274 |
+
"paraphrase_original": 32.0
|
275 |
+
},
|
276 |
+
"color": {
|
277 |
+
"Shake_": 14.000000000000002,
|
278 |
+
"shake_original": 28.000000000000004,
|
279 |
+
"Paraphrase_": 2.0,
|
280 |
+
"paraphrase_original": 30.0
|
281 |
+
},
|
282 |
+
"counting": {
|
283 |
+
"Shake_": 32.0,
|
284 |
+
"shake_original": 45.0,
|
285 |
+
"Paraphrase_": 36.0,
|
286 |
+
"paraphrase_original": 45.0
|
287 |
+
},
|
288 |
+
"spatial": {
|
289 |
+
"Shake_": 6.0,
|
290 |
+
"shake_original": 7.000000000000001,
|
291 |
+
"Paraphrase_": 10.0,
|
292 |
+
"paraphrase_original": 14.000000000000002
|
293 |
+
}
|
294 |
+
}
|
295 |
+
},
|
296 |
+
"openjourney-v4": {
|
297 |
+
"trial_0": {
|
298 |
+
"fidelity": {
|
299 |
+
"Shake_": 0.70665283203125,
|
300 |
+
"shake_original": 0.85979736328125,
|
301 |
+
"Paraphrase_": 0.763916015625,
|
302 |
+
"paraphrase_original": 0.8503076171875
|
303 |
+
},
|
304 |
+
"size": {
|
305 |
+
"Shake_": 16.0,
|
306 |
+
"shake_original": 34.0,
|
307 |
+
"Paraphrase_": 20.0,
|
308 |
+
"paraphrase_original": 36.0
|
309 |
+
},
|
310 |
+
"color": {
|
311 |
+
"Shake_": 20.0,
|
312 |
+
"shake_original": 30.0,
|
313 |
+
"Paraphrase_": 10.0,
|
314 |
+
"paraphrase_original": 18.0
|
315 |
+
},
|
316 |
+
"counting": {
|
317 |
+
"Shake_": 28.000000000000004,
|
318 |
+
"shake_original": 41.0,
|
319 |
+
"Paraphrase_": 35.0,
|
320 |
+
"paraphrase_original": 37.0
|
321 |
+
},
|
322 |
+
"spatial": {
|
323 |
+
"Shake_": 8.0,
|
324 |
+
"shake_original": 21.0,
|
325 |
+
"Paraphrase_": 12.0,
|
326 |
+
"paraphrase_original": 23.0
|
327 |
+
}
|
328 |
+
},
|
329 |
+
"trial_1": {
|
330 |
+
"fidelity": {
|
331 |
+
"Shake_": 0.70664794921875,
|
332 |
+
"shake_original": 0.85979736328125,
|
333 |
+
"Paraphrase_": 0.76390625,
|
334 |
+
"paraphrase_original": 0.8503076171875
|
335 |
+
},
|
336 |
+
"size": {
|
337 |
+
"Shake_": 10.0,
|
338 |
+
"shake_original": 30.0,
|
339 |
+
"Paraphrase_": 18.0,
|
340 |
+
"paraphrase_original": 26.0
|
341 |
+
},
|
342 |
+
"color": {
|
343 |
+
"Shake_": 10.0,
|
344 |
+
"shake_original": 28.000000000000004,
|
345 |
+
"Paraphrase_": 12.0,
|
346 |
+
"paraphrase_original": 26.0
|
347 |
+
},
|
348 |
+
"counting": {
|
349 |
+
"Shake_": 27.0,
|
350 |
+
"shake_original": 37.0,
|
351 |
+
"Paraphrase_": 31.0,
|
352 |
+
"paraphrase_original": 39.0
|
353 |
+
},
|
354 |
+
"spatial": {
|
355 |
+
"Shake_": 6.0,
|
356 |
+
"shake_original": 18.0,
|
357 |
+
"Paraphrase_": 4.0,
|
358 |
+
"paraphrase_original": 19.0
|
359 |
+
}
|
360 |
+
},
|
361 |
+
"trial_2": {
|
362 |
+
"fidelity": {
|
363 |
+
"Shake_": 0.70664794921875,
|
364 |
+
"shake_original": 0.85979736328125,
|
365 |
+
"Paraphrase_": 0.76390625,
|
366 |
+
"paraphrase_original": 0.8503076171875
|
367 |
+
},
|
368 |
+
"size": {
|
369 |
+
"Shake_": 14.000000000000002,
|
370 |
+
"shake_original": 26.0,
|
371 |
+
"Paraphrase_": 8.0,
|
372 |
+
"paraphrase_original": 28.000000000000004
|
373 |
+
},
|
374 |
+
"color": {
|
375 |
+
"Shake_": 12.0,
|
376 |
+
"shake_original": 22.0,
|
377 |
+
"Paraphrase_": 14.000000000000002,
|
378 |
+
"paraphrase_original": 14.000000000000002
|
379 |
+
},
|
380 |
+
"counting": {
|
381 |
+
"Shake_": 25.0,
|
382 |
+
"shake_original": 45.0,
|
383 |
+
"Paraphrase_": 31.0,
|
384 |
+
"paraphrase_original": 36.0
|
385 |
+
},
|
386 |
+
"spatial": {
|
387 |
+
"Shake_": 7.000000000000001,
|
388 |
+
"shake_original": 18.0,
|
389 |
+
"Paraphrase_": 14.000000000000002,
|
390 |
+
"paraphrase_original": 23.0
|
391 |
+
}
|
392 |
+
}
|
393 |
+
},
|
394 |
+
"stable-diffusion-xl-base-1.0": {
|
395 |
+
"trial_0": {
|
396 |
+
"fidelity": {
|
397 |
+
"Shake_": 0.688385009765625,
|
398 |
+
"shake_original": 0.8924072265625,
|
399 |
+
"Paraphrase_": 0.7473681640625,
|
400 |
+
"paraphrase_original": 0.8856298828125
|
401 |
+
},
|
402 |
+
"size": {
|
403 |
+
"Shake_": 18.0,
|
404 |
+
"shake_original": 50.0,
|
405 |
+
"Paraphrase_": 32.0,
|
406 |
+
"paraphrase_original": 48.0
|
407 |
+
},
|
408 |
+
"color": {
|
409 |
+
"Shake_": 14.000000000000002,
|
410 |
+
"shake_original": 56.00000000000001,
|
411 |
+
"Paraphrase_": 2.0,
|
412 |
+
"paraphrase_original": 42.0
|
413 |
+
},
|
414 |
+
"counting": {
|
415 |
+
"Shake_": 23.0,
|
416 |
+
"shake_original": 47.0,
|
417 |
+
"Paraphrase_": 30.0,
|
418 |
+
"paraphrase_original": 47.0
|
419 |
+
},
|
420 |
+
"spatial": {
|
421 |
+
"Shake_": 9.0,
|
422 |
+
"shake_original": 28.999999999999996,
|
423 |
+
"Paraphrase_": 8.0,
|
424 |
+
"paraphrase_original": 38.0
|
425 |
+
}
|
426 |
+
},
|
427 |
+
"trial_1": {
|
428 |
+
"fidelity": {
|
429 |
+
"Shake_": 0.6883721923828126,
|
430 |
+
"shake_original": 0.8924072265625,
|
431 |
+
"Paraphrase_": 0.74734619140625,
|
432 |
+
"paraphrase_original": 0.8856298828125
|
433 |
+
},
|
434 |
+
"size": {
|
435 |
+
"Shake_": 14.000000000000002,
|
436 |
+
"shake_original": 40.0,
|
437 |
+
"Paraphrase_": 16.0,
|
438 |
+
"paraphrase_original": 46.0
|
439 |
+
},
|
440 |
+
"color": {
|
441 |
+
"Shake_": 10.0,
|
442 |
+
"shake_original": 54.0,
|
443 |
+
"Paraphrase_": 8.0,
|
444 |
+
"paraphrase_original": 48.0
|
445 |
+
},
|
446 |
+
"counting": {
|
447 |
+
"Shake_": 23.0,
|
448 |
+
"shake_original": 51.0,
|
449 |
+
"Paraphrase_": 39.0,
|
450 |
+
"paraphrase_original": 51.0
|
451 |
+
},
|
452 |
+
"spatial": {
|
453 |
+
"Shake_": 11.0,
|
454 |
+
"shake_original": 23.0,
|
455 |
+
"Paraphrase_": 13.0,
|
456 |
+
"paraphrase_original": 20.0
|
457 |
+
}
|
458 |
+
},
|
459 |
+
"trial_2": {
|
460 |
+
"fidelity": {
|
461 |
+
"Shake_": 0.6883721923828126,
|
462 |
+
"shake_original": 0.8924072265625,
|
463 |
+
"Paraphrase_": 0.74734619140625,
|
464 |
+
"paraphrase_original": 0.8856298828125
|
465 |
+
},
|
466 |
+
"size": {
|
467 |
+
"Shake_": 12.0,
|
468 |
+
"shake_original": 46.0,
|
469 |
+
"Paraphrase_": 14.000000000000002,
|
470 |
+
"paraphrase_original": 52.0
|
471 |
+
},
|
472 |
+
"color": {
|
473 |
+
"Shake_": 18.0,
|
474 |
+
"shake_original": 56.00000000000001,
|
475 |
+
"Paraphrase_": 12.0,
|
476 |
+
"paraphrase_original": 46.0
|
477 |
+
},
|
478 |
+
"counting": {
|
479 |
+
"Shake_": 22.0,
|
480 |
+
"shake_original": 51.0,
|
481 |
+
"Paraphrase_": 33.0,
|
482 |
+
"paraphrase_original": 47.0
|
483 |
+
},
|
484 |
+
"spatial": {
|
485 |
+
"Shake_": 12.0,
|
486 |
+
"shake_original": 30.0,
|
487 |
+
"Paraphrase_": 9.0,
|
488 |
+
"paraphrase_original": 33.0
|
489 |
+
}
|
490 |
+
}
|
491 |
+
},
|
492 |
+
"dall-e-2": {
|
493 |
+
"trial_0": {
|
494 |
+
"fidelity": {
|
495 |
+
"Shake_": 0.654228515625,
|
496 |
+
"shake_original": 0.8556569417317709,
|
497 |
+
"Paraphrase_": 0.7283056640625,
|
498 |
+
"paraphrase_original": 0.8522628630050505
|
499 |
+
},
|
500 |
+
"size": {
|
501 |
+
"Shake_": 8.0,
|
502 |
+
"shake_original": 38.0,
|
503 |
+
"Paraphrase_": 28.000000000000004,
|
504 |
+
"paraphrase_original": 40.0
|
505 |
+
},
|
506 |
+
"color": {
|
507 |
+
"Shake_": 6.0,
|
508 |
+
"shake_original": 42.0,
|
509 |
+
"Paraphrase_": 12.0,
|
510 |
+
"paraphrase_original": 28.000000000000004
|
511 |
+
},
|
512 |
+
"counting": {
|
513 |
+
"Shake_": 44.0,
|
514 |
+
"shake_original": 64.0,
|
515 |
+
"Paraphrase_": 45.0,
|
516 |
+
"paraphrase_original": 63.0
|
517 |
+
},
|
518 |
+
"spatial": {
|
519 |
+
"Shake_": 5.0,
|
520 |
+
"shake_original": 18.0,
|
521 |
+
"Paraphrase_": 9.0,
|
522 |
+
"paraphrase_original": 25.0
|
523 |
+
}
|
524 |
+
},
|
525 |
+
"trial_1": {
|
526 |
+
"fidelity": {
|
527 |
+
"Shake_": 0.6542138671875,
|
528 |
+
"shake_original": 0.8556671142578125,
|
529 |
+
"Paraphrase_": 0.7282958984375,
|
530 |
+
"paraphrase_original": 0.8522875236742424
|
531 |
+
},
|
532 |
+
"size": {
|
533 |
+
"Shake_": 12.0,
|
534 |
+
"shake_original": 40.0,
|
535 |
+
"Paraphrase_": 22.0,
|
536 |
+
"paraphrase_original": 34.0
|
537 |
+
},
|
538 |
+
"color": {
|
539 |
+
"Shake_": 2.0,
|
540 |
+
"shake_original": 40.0,
|
541 |
+
"Paraphrase_": 8.0,
|
542 |
+
"paraphrase_original": 32.0
|
543 |
+
},
|
544 |
+
"counting": {
|
545 |
+
"Shake_": 40.0,
|
546 |
+
"shake_original": 61.0,
|
547 |
+
"Paraphrase_": 48.0,
|
548 |
+
"paraphrase_original": 53.0
|
549 |
+
},
|
550 |
+
"spatial": {
|
551 |
+
"Shake_": 8.0,
|
552 |
+
"shake_original": 28.000000000000004,
|
553 |
+
"Paraphrase_": 7.000000000000001,
|
554 |
+
"paraphrase_original": 26.0
|
555 |
+
}
|
556 |
+
},
|
557 |
+
"trial_2": {
|
558 |
+
"fidelity": {
|
559 |
+
"Shake_": 0.6542138671875,
|
560 |
+
"shake_original": 0.8556671142578125,
|
561 |
+
"Paraphrase_": 0.7282958984375,
|
562 |
+
"paraphrase_original": 0.8522875236742424
|
563 |
+
},
|
564 |
+
"size": {
|
565 |
+
"Shake_": 12.0,
|
566 |
+
"shake_original": 30.0,
|
567 |
+
"Paraphrase_": 28.000000000000004,
|
568 |
+
"paraphrase_original": 32.0
|
569 |
+
},
|
570 |
+
"color": {
|
571 |
+
"Shake_": 6.0,
|
572 |
+
"shake_original": 32.0,
|
573 |
+
"Paraphrase_": 6.0,
|
574 |
+
"paraphrase_original": 32.0
|
575 |
+
},
|
576 |
+
"counting": {
|
577 |
+
"Shake_": 43.0,
|
578 |
+
"shake_original": 64.0,
|
579 |
+
"Paraphrase_": 48.0,
|
580 |
+
"paraphrase_original": 56.00000000000001
|
581 |
+
},
|
582 |
+
"spatial": {
|
583 |
+
"Shake_": 7.000000000000001,
|
584 |
+
"shake_original": 16.0,
|
585 |
+
"Paraphrase_": 8.0,
|
586 |
+
"paraphrase_original": 25.0
|
587 |
+
}
|
588 |
+
}
|
589 |
+
}
|
590 |
+
}
|
data/results/privacy_i2t_summary.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"gpt-4-vision-preview": {
|
3 |
+
"Country": 8.97,
|
4 |
+
"State": 55.4,
|
5 |
+
"City": 60.0,
|
6 |
+
"ZIP Code Range": 82.53,
|
7 |
+
"ZIP Code": 87.82,
|
8 |
+
"Average": 58.94
|
9 |
+
},
|
10 |
+
"gpt-4o-2024-05-13": {
|
11 |
+
"Country": 1.84,
|
12 |
+
"State": 24.6,
|
13 |
+
"City": 39.77,
|
14 |
+
"ZIP Code Range": 63.45,
|
15 |
+
"ZIP Code": 72.87,
|
16 |
+
"Average": 40.51
|
17 |
+
},
|
18 |
+
"Qwen-VL-7B-Chat": {
|
19 |
+
"Country": 8.51,
|
20 |
+
"State": 62.3,
|
21 |
+
"City": 75.63,
|
22 |
+
"ZIP Code Range": 89.89,
|
23 |
+
"ZIP Code": 95.4,
|
24 |
+
"Average": 66.35
|
25 |
+
},
|
26 |
+
"llava-v1.6-vicuna-7b-hf": {
|
27 |
+
"Country": 54.48,
|
28 |
+
"State": 68.28,
|
29 |
+
"City": 74.94,
|
30 |
+
"ZIP Code Range": 95.63,
|
31 |
+
"ZIP Code": 98.62,
|
32 |
+
"Average": 78.39
|
33 |
+
},
|
34 |
+
"llava-v1.6-mistral-7b-hf":{
|
35 |
+
"Country": 76.61,
|
36 |
+
"State": 90.08,
|
37 |
+
"City": 93.85,
|
38 |
+
"ZIP Code Range": 99.57,
|
39 |
+
"ZIP Code": 99.78,
|
40 |
+
"Average": 91.98
|
41 |
+
},
|
42 |
+
"InstructBLIP": {
|
43 |
+
"Country": 11.95,
|
44 |
+
"State": 75.63,
|
45 |
+
"City": 70.11,
|
46 |
+
"ZIP Code Range": 100.0,
|
47 |
+
"ZIP Code": 100.0,
|
48 |
+
"Average": 71.54
|
49 |
+
},
|
50 |
+
"llava-v1.5-7B": {
|
51 |
+
"Country": 53.56,
|
52 |
+
"State": 77.93,
|
53 |
+
"City": 89.89,
|
54 |
+
"ZIP Code Range": 90.11,
|
55 |
+
"ZIP Code": 97.7,
|
56 |
+
"Average": 81.84
|
57 |
+
},
|
58 |
+
"LLAVA-v1.6-mistral-7B": {
|
59 |
+
"Country": 64.37,
|
60 |
+
"State": 94.94,
|
61 |
+
"City": 78.16,
|
62 |
+
"ZIP Code Range": 98.85,
|
63 |
+
"ZIP Code": 99.77,
|
64 |
+
"Average": 87.22
|
65 |
+
}
|
66 |
+
}
|
data/results/privacy_t2i_summary.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"stable-diffusion-v1-5": {
|
3 |
+
"cos_dissim": 25.89,
|
4 |
+
"Average": 25.89
|
5 |
+
},
|
6 |
+
"stable-diffusion-2": {
|
7 |
+
"cos_dissim": 24.64,
|
8 |
+
"Average": 24.64
|
9 |
+
},
|
10 |
+
"stable-diffusion-xl-base-1.0": {
|
11 |
+
"cos_dissim": 24.79,
|
12 |
+
"Average": 24.79
|
13 |
+
},
|
14 |
+
"openjourney-v4": {
|
15 |
+
"cos_dissim": 26.08,
|
16 |
+
"Average": 26.08
|
17 |
+
},
|
18 |
+
"IF-I-M-v1.0": {
|
19 |
+
"cos_dissim": 26.57,
|
20 |
+
"Average": 26.57
|
21 |
+
},
|
22 |
+
"dreamlike-photoreal-2.0": {
|
23 |
+
"cos_dissim": 26.96,
|
24 |
+
"Average": 26.96
|
25 |
+
},
|
26 |
+
"kandinsky-3": {
|
27 |
+
"cos_dissim": 27.05,
|
28 |
+
"Average": 27.05
|
29 |
+
},
|
30 |
+
"OpenDalleV1.1": {
|
31 |
+
"cos_dissim": 24.9,
|
32 |
+
"Average": 24.9
|
33 |
+
},
|
34 |
+
"dall-e-2": {
|
35 |
+
"cos_dissim": 32.48,
|
36 |
+
"Average": 32.48
|
37 |
+
},
|
38 |
+
"dall-e-3": {
|
39 |
+
"cos_dissim": 36.65,
|
40 |
+
"Average": 36.65
|
41 |
+
}
|
42 |
+
}
|
data/results/safety_i2t_summary.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"llava-v1.6-vicuna-7b-hf": {
|
3 |
+
"Typography": 0.790,
|
4 |
+
"Illustration": 0.454,
|
5 |
+
"Jailbreak": 0.372,
|
6 |
+
"Average": 0.538
|
7 |
+
},
|
8 |
+
"gpt-4-vision-preview": {
|
9 |
+
"Typography": 0.006,
|
10 |
+
"Illustration": 0.009,
|
11 |
+
"Jailbreak": 0.000,
|
12 |
+
"Average": 0.005
|
13 |
+
},
|
14 |
+
"gpt-4o-2024-05-13": {
|
15 |
+
"Typography": 0.127,
|
16 |
+
"Illustration": 0.081,
|
17 |
+
"Jailbreak": 0.018,
|
18 |
+
"Average": 0.075
|
19 |
+
}
|
20 |
+
}
|
data/results/safety_t2i_summary.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"stable-diffusion-xl-base-1.0": {
|
3 |
+
"Vanilla": 0.450,
|
4 |
+
"Transformed": 0.239,
|
5 |
+
"Jailbreak": 0.400,
|
6 |
+
"Average": 0.348
|
7 |
+
},
|
8 |
+
"dreamlike-photoreal-2.0": {
|
9 |
+
"Vanilla": 0.409,
|
10 |
+
"Transformed": 0.230,
|
11 |
+
"Jailbreak": 0.353,
|
12 |
+
"Average": 0.330
|
13 |
+
},
|
14 |
+
"openjourney-v4": {
|
15 |
+
"Vanilla": 0.366,
|
16 |
+
"Transformed": 0.223,
|
17 |
+
"Jailbreak": 0.330,
|
18 |
+
"Average": 0.306
|
19 |
+
},
|
20 |
+
"IF-I-M-v1.0": {
|
21 |
+
"Vanilla": 0.396,
|
22 |
+
"Transformed": 0.216,
|
23 |
+
"Jailbreak": 0.353,
|
24 |
+
"Average": 0.321
|
25 |
+
},
|
26 |
+
"dall-e-2": {
|
27 |
+
"Vanilla": 0.250,
|
28 |
+
"Transformed": 0.136,
|
29 |
+
"Jailbreak": 0.229,
|
30 |
+
"Average": 0.205
|
31 |
+
},
|
32 |
+
"dall-e-3": {
|
33 |
+
"Vanilla": 0.206,
|
34 |
+
"Transformed": 0.180,
|
35 |
+
"Jailbreak": 0.203,
|
36 |
+
"Average": 0.196
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
generate_plot.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import plotly.colors
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
from plotly.subplots import make_subplots
|
4 |
+
import os
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import argparse
|
7 |
+
from utils.score_extract.ood_agg import ood_t2i_agg, ood_i2t_agg
|
8 |
+
|
9 |
+
DEFAULT_PLOTLY_COLORS = plotly.colors.DEFAULT_PLOTLY_COLORS
|
10 |
+
|
11 |
+
|
12 |
+
def to_rgba(rgb, alpha=1):
|
13 |
+
return 'rgba' + rgb[3:][:-1] + f', {alpha})'
|
14 |
+
|
15 |
+
def radar_plot(results, thetas, selected_models):
|
16 |
+
# Extract performance values for each model across all benchmarks
|
17 |
+
model_performance = {}
|
18 |
+
selected_models = [os.path.basename(model) for model in selected_models]
|
19 |
+
for model in selected_models:
|
20 |
+
if model in results:
|
21 |
+
benchmarks_data = results[model]
|
22 |
+
model_performance[model] = [benchmarks_data[subfield] for subfield in benchmarks_data.keys()]
|
23 |
+
|
24 |
+
# Create radar chart with plotly
|
25 |
+
fig = make_subplots(
|
26 |
+
rows=2, cols=1,
|
27 |
+
shared_xaxes=True,
|
28 |
+
vertical_spacing=0.2,
|
29 |
+
row_heights=[1, 0.4],
|
30 |
+
specs=[[{"type": "polar"}], [{"type": "table"}]]
|
31 |
+
)
|
32 |
+
|
33 |
+
for i, (model, performance) in enumerate(model_performance.items()):
|
34 |
+
color = DEFAULT_PLOTLY_COLORS[i % len(DEFAULT_PLOTLY_COLORS)]
|
35 |
+
|
36 |
+
fig.add_trace(
|
37 |
+
go.Scatterpolar(
|
38 |
+
r=performance + [performance[0]],
|
39 |
+
theta=thetas + [thetas[0]],
|
40 |
+
fill='toself',
|
41 |
+
connectgaps=True,
|
42 |
+
fillcolor=to_rgba(color, 0.1),
|
43 |
+
name=model.split('/')[-1], # Use the last part of the model name for clarity
|
44 |
+
),
|
45 |
+
row=1, col=1
|
46 |
+
)
|
47 |
+
|
48 |
+
header_texts = ["Model"] + [x.replace("<br>", " ") for x in thetas]
|
49 |
+
rows = [[x.split('/')[-1] for x in selected_models]] + [[round(score[i], 2) for score in [model_performance[x] for x in selected_models]] for i in range(len(thetas))]
|
50 |
+
# column_widths = [len(x) for x in header_texts]
|
51 |
+
# column_widths[0] *= len(thetas)
|
52 |
+
|
53 |
+
fig.add_trace(
|
54 |
+
go.Table(
|
55 |
+
header=dict(values=header_texts, font=dict(size=12), align="left"),
|
56 |
+
cells=dict(
|
57 |
+
values=rows,
|
58 |
+
align="left",
|
59 |
+
font=dict(size=12),
|
60 |
+
height=30
|
61 |
+
),
|
62 |
+
# columnwidth=column_widths
|
63 |
+
),
|
64 |
+
row=2, col=1
|
65 |
+
)
|
66 |
+
|
67 |
+
fig.update_layout(
|
68 |
+
height=900,
|
69 |
+
legend=dict(font=dict(size=20), orientation="h", xanchor="center", x=0.5, y=0.35),
|
70 |
+
polar=dict(
|
71 |
+
radialaxis=dict(
|
72 |
+
visible=True,
|
73 |
+
range=[0, 100], # Assuming accuracy is a percentage between 0 and 100
|
74 |
+
tickfont=dict(size=12)
|
75 |
+
),
|
76 |
+
angularaxis=dict(tickfont=dict(size=20), type="category")
|
77 |
+
),
|
78 |
+
showlegend=True,
|
79 |
+
# title=f"{title}"
|
80 |
+
)
|
81 |
+
|
82 |
+
return fig
|
83 |
+
|
84 |
+
|
85 |
+
def main_radar_plot(main_scores, selected_models):
|
86 |
+
fig = make_subplots(
|
87 |
+
rows=2, cols=1,
|
88 |
+
shared_xaxes=True,
|
89 |
+
vertical_spacing=0.2,
|
90 |
+
row_heights=[1.0, 0.5],
|
91 |
+
specs=[[{"type": "polar"}], [{"type": "table"}]]
|
92 |
+
)
|
93 |
+
model_scores = {}
|
94 |
+
for model in selected_models:
|
95 |
+
model_name = os.path.basename(model)
|
96 |
+
model_scores[model_name] = main_scores[model_name]
|
97 |
+
perspectives = list(model_scores[os.path.basename(selected_models[0])].keys())
|
98 |
+
perspectives_shift = perspectives
|
99 |
+
for i, model_name in enumerate(model_scores.keys()):
|
100 |
+
color = DEFAULT_PLOTLY_COLORS[i % len(DEFAULT_PLOTLY_COLORS)]
|
101 |
+
score_shifted = list(model_scores[model_name].values())
|
102 |
+
fig.add_trace(
|
103 |
+
go.Scatterpolar(
|
104 |
+
r=score_shifted + [score_shifted[0]],
|
105 |
+
theta=perspectives_shift + [perspectives_shift[0]],
|
106 |
+
connectgaps=True,
|
107 |
+
fill='toself',
|
108 |
+
fillcolor=to_rgba(color, 0.1),
|
109 |
+
name=model_name, # Use the last part of the model name for clarity
|
110 |
+
),
|
111 |
+
row=1, col=1
|
112 |
+
)
|
113 |
+
|
114 |
+
header_texts = ["Model"] + perspectives
|
115 |
+
rows = [
|
116 |
+
list(model_scores.keys()), # Model Names
|
117 |
+
*[[round(score[perspective], 2) for score in list(model_scores.values())] for perspective in perspectives]
|
118 |
+
]
|
119 |
+
column_widths = [10] + [5] * len(perspectives)
|
120 |
+
|
121 |
+
fig.add_trace(
|
122 |
+
go.Table(
|
123 |
+
header=dict(values=header_texts, font=dict(size=12), align="left"),
|
124 |
+
cells=dict(
|
125 |
+
values=rows,
|
126 |
+
align="left",
|
127 |
+
font=dict(size=12),
|
128 |
+
height=30,
|
129 |
+
),
|
130 |
+
columnwidth=column_widths,
|
131 |
+
),
|
132 |
+
row=2, col=1
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
fig.update_layout(
|
137 |
+
height=1200,
|
138 |
+
legend=dict(font=dict(size=20), orientation="h", xanchor="center", x=0.5, y=0.4),
|
139 |
+
polar=dict(
|
140 |
+
radialaxis=dict(
|
141 |
+
visible=True,
|
142 |
+
range=[0, 100], # Assuming accuracy is a percentage between 0 and 100
|
143 |
+
tickfont=dict(size=12)
|
144 |
+
),
|
145 |
+
angularaxis=dict(tickfont=dict(size=20), type="category", rotation=5)
|
146 |
+
),
|
147 |
+
showlegend=True,
|
148 |
+
title=dict(text="MM-DecodingTrust Scores (Higher is Better)"),
|
149 |
+
)
|
150 |
+
return fig
|
151 |
+
|
152 |
+
|
153 |
+
def breakdown_plot(scenario_results, subfields, selected_models):
|
154 |
+
fig = radar_plot(scenario_results, subfields, selected_models)
|
155 |
+
return fig
|
156 |
+
|
157 |
+
def update_subscores(target_model, main_scores, config_dicts):
|
158 |
+
perspectives = []
|
159 |
+
target_model = target_model.split('/')[-1]
|
160 |
+
curr_main_scores = {}
|
161 |
+
curr_main_scores[target_model] = {}
|
162 |
+
for perspective in main_scores[target_model].keys():
|
163 |
+
curr_main_scores[target_model][config_dicts[perspective]["name"]] = main_scores[target_model][perspective]
|
164 |
+
perspectives.append(config_dicts[perspective]["name"])
|
165 |
+
return curr_main_scores
|
166 |
+
|
167 |
+
def generate_plot(model, main_scores, sub_scores, config_dict, out_path="plots"):
|
168 |
+
curr_main_scores = update_subscores(model, main_scores, config_dict)
|
169 |
+
for idx, perspective in enumerate(config_dict.keys()):
|
170 |
+
if config_dict[perspective]["sub_plot"] == False:
|
171 |
+
continue
|
172 |
+
# if "openai/gpt-4-0314" not in sub_scores[perspective].keys():
|
173 |
+
# model_list = [model]
|
174 |
+
# else:
|
175 |
+
# model_list = [model, "openai/gpt-4-0314"]
|
176 |
+
model_list = [model]
|
177 |
+
subplot = breakdown_plot(sub_scores[perspective], list(sub_scores[perspective][model].keys()), model_list)
|
178 |
+
perspective_name = config_dict[perspective]["name"].replace(" ", "_")
|
179 |
+
subplot.write_image(f"{out_path}/{perspective_name}_breakdown.png", width=1400, height=700)
|
180 |
+
plot = main_radar_plot(curr_main_scores, [model])
|
181 |
+
plot.write_image(f"{out_path}/main.png", width=1400, height=700)
|
182 |
+
|
183 |
+
def generate_main_plot(models, main_scores):
|
184 |
+
curr_main_scores = main_scores
|
185 |
+
plot = main_radar_plot(curr_main_scores, models)
|
186 |
+
return plot
|
187 |
+
# plot.write_image(f"{out_path}/main.png", width=1400, height=700)
|
188 |
+
def generate_sub_plot(models, sub_scores, perspective):
|
189 |
+
subplot = breakdown_plot(sub_scores[perspective], list(sub_scores[perspective][models[0]].keys()), models)
|
190 |
+
return subplot
|
191 |
+
|
192 |
+
if __name__ == "__main__":
|
193 |
+
# parser = argparse.ArgumentParser()
|
194 |
+
# parser.add_argument("--model", type=str, default="hf/meta-llama/Llama-2-7b-chat-hf")
|
195 |
+
# args = parser.parse_args()
|
196 |
+
t2i_models = [ # Average time spent running the following example
|
197 |
+
"dall-e-2",
|
198 |
+
"dall-e-3",
|
199 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
200 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
201 |
+
"prompthero/openjourney-v4", # 4.981
|
202 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
203 |
+
]
|
204 |
+
i2t_models = [ # Average time spent running the following example
|
205 |
+
"gpt-4-vision-preview",
|
206 |
+
"gpt-4o-2024-05-13",
|
207 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
208 |
+
]
|
209 |
+
perspectives = ["safety", "fairness", "hallucination", "privacy", "adv", "ood"]
|
210 |
+
main_scores_t2i = {}
|
211 |
+
main_scores_i2t = {}
|
212 |
+
sub_scores_t2i = {}
|
213 |
+
sub_scores_i2t = {}
|
214 |
+
for model in t2i_models:
|
215 |
+
model = model.split("/")[-1]
|
216 |
+
main_scores_t2i[model] = {}
|
217 |
+
for perspective in perspectives:
|
218 |
+
# Place holder
|
219 |
+
main_scores_t2i[model][perspective] = ood_t2i_agg(model, "./data/results")["score"]
|
220 |
+
if perspective not in sub_scores_t2i.keys():
|
221 |
+
sub_scores_t2i[perspective] = {}
|
222 |
+
sub_scores_t2i[perspective][model] = ood_t2i_agg(model, "./data/results")["subscenarios"]
|
223 |
+
|
224 |
+
|
225 |
+
for model in i2t_models:
|
226 |
+
model = model.split("/")[-1]
|
227 |
+
main_scores_i2t[model] = {}
|
228 |
+
for perspective in perspectives:
|
229 |
+
# Place holder
|
230 |
+
main_scores_i2t[model][perspective] = ood_i2t_agg(model, "./data/results")["score"]
|
231 |
+
if perspective not in sub_scores_i2t.keys():
|
232 |
+
sub_scores_i2t[perspective] = {}
|
233 |
+
sub_scores_i2t[perspective][model] = ood_i2t_agg(model, "./data/results")["subscenarios"]
|
234 |
+
|
235 |
+
# generate_main_plot(t2i_models, main_scores_t2i)
|
236 |
+
# generate_main_plot(i2t_models, main_scores_i2t)
|
237 |
+
|
238 |
+
generate_sub_plot(t2i_models, sub_scores_t2i, "ood")
|
239 |
+
# generate_sub_plot(i2t_models, sub_scores_i2t)
|
240 |
+
|
241 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ansi2html==1.8.0
|
2 |
+
certifi==2023.7.22
|
3 |
+
charset-normalizer==3.2.0
|
4 |
+
click==8.1.6
|
5 |
+
dash==2.12.0
|
6 |
+
dash-core-components==2.0.0
|
7 |
+
dash-html-components==2.0.0
|
8 |
+
dash-table==5.0.0
|
9 |
+
Flask==2.2.5
|
10 |
+
gunicorn==21.2.0
|
11 |
+
idna==3.4
|
12 |
+
itsdangerous==2.1.2
|
13 |
+
Jinja2==3.1.2
|
14 |
+
MarkupSafe==2.1.3
|
15 |
+
nest-asyncio==1.5.7
|
16 |
+
numpy==1.25.2
|
17 |
+
packaging==23.1
|
18 |
+
pandas==2.0.3
|
19 |
+
plotly==5.16.0
|
20 |
+
python-dateutil==2.8.2
|
21 |
+
pytz==2023.3
|
22 |
+
requests==2.31.0
|
23 |
+
retrying==1.3.4
|
24 |
+
six==1.16.0
|
25 |
+
tenacity==8.2.3
|
26 |
+
typing_extensions==4.7.1
|
27 |
+
tzdata==2023.3
|
28 |
+
urllib3==2.0.4
|
29 |
+
Werkzeug==2.2.3
|
30 |
+
gradio==3.50.2
|
31 |
+
joblib
|
utils/score_extract/adversarial_robustness_agg.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
def adversarial_robustness_t2i_agg(model, result_dir):
|
5 |
+
model = model.split("/")[-1]
|
6 |
+
result_path = os.path.join(result_dir, "adversarial_robustness_t2i_summary.json")
|
7 |
+
with open(result_path, "r") as file:
|
8 |
+
results = json.load(file)
|
9 |
+
agg_scores = {}
|
10 |
+
agg_scores["score"] = results[model].pop("Average")
|
11 |
+
agg_scores["subscenarios"] = results[model]
|
12 |
+
return agg_scores
|
13 |
+
|
14 |
+
def adversarial_robustness_i2t_agg(model, result_dir):
|
15 |
+
model = model.split("/")[-1]
|
16 |
+
result_path = os.path.join(result_dir, "adversarial_robustness_i2t_summary.json")
|
17 |
+
with open(result_path, "r") as file:
|
18 |
+
results = json.load(file)
|
19 |
+
agg_scores = {}
|
20 |
+
agg_scores["score"] = results[model].pop("Average")
|
21 |
+
agg_scores["subscenarios"] = results[model]
|
22 |
+
return agg_scores
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
t2i_models = [ # Average time spent running the following example
|
26 |
+
"dall-e-2",
|
27 |
+
"dall-e-3",
|
28 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
29 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
30 |
+
"prompthero/openjourney-v4", # 4.981
|
31 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
32 |
+
]
|
33 |
+
i2t_models = [ # Average time spent running the following example
|
34 |
+
"gpt-4-vision-preview",
|
35 |
+
"gpt-4o-2024-05-13",
|
36 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
37 |
+
]
|
38 |
+
result_dir = "./data/results"
|
39 |
+
print(adversarial_robustness_i2t_agg(i2t_models[0], result_dir))
|
40 |
+
print(adversarial_robustness_t2i_agg(t2i_models[0], result_dir))
|
utils/score_extract/fairness_agg.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
def fairness_t2i_agg(model, result_dir):
|
5 |
+
model = model.split("/")[-1]
|
6 |
+
result_path = os.path.join(result_dir, "fairness_t2i_summary.json")
|
7 |
+
with open(result_path, "r") as file:
|
8 |
+
results = json.load(file)
|
9 |
+
agg_scores = {}
|
10 |
+
agg_scores["score"] = results[model].pop("Average") * 100
|
11 |
+
agg_scores["subscenarios"] = results[model]
|
12 |
+
for key in agg_scores["subscenarios"]:
|
13 |
+
agg_scores["subscenarios"][key] = agg_scores["subscenarios"][key] * 100
|
14 |
+
return agg_scores
|
15 |
+
|
16 |
+
def fairness_i2t_agg(model, result_dir):
|
17 |
+
model = model.split("/")[-1]
|
18 |
+
result_path = os.path.join(result_dir, "fairness_i2t_summary.json")
|
19 |
+
with open(result_path, "r") as file:
|
20 |
+
results = json.load(file)
|
21 |
+
agg_scores = {}
|
22 |
+
agg_scores["score"] = results[model].pop("Average") * 100
|
23 |
+
agg_scores["subscenarios"] = results[model]
|
24 |
+
for key in agg_scores["subscenarios"]:
|
25 |
+
agg_scores["subscenarios"][key] = agg_scores["subscenarios"][key] * 100
|
26 |
+
return agg_scores
|
27 |
+
|
28 |
+
if __name__ == "__main__":
|
29 |
+
t2i_models = [ # Average time spent running the following example
|
30 |
+
"dall-e-2",
|
31 |
+
"dall-e-3",
|
32 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
33 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
34 |
+
"prompthero/openjourney-v4", # 4.981
|
35 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
36 |
+
]
|
37 |
+
i2t_models = [ # Average time spent running the following example
|
38 |
+
"gpt-4-vision-preview",
|
39 |
+
"gpt-4o-2024-05-13",
|
40 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
41 |
+
]
|
42 |
+
result_dir = "./data/results"
|
43 |
+
print(fairness_i2t_agg(i2t_models[0], result_dir))
|
44 |
+
print(fairness_t2i_agg(t2i_models[0], result_dir))
|
utils/score_extract/hallucination_agg.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
def hallucination_t2i_agg(model, result_dir):
|
5 |
+
model = model.split("/")[-1]
|
6 |
+
result_path = os.path.join(result_dir, "hallucination_t2i_summary.json")
|
7 |
+
with open(result_path, "r") as file:
|
8 |
+
results = json.load(file)
|
9 |
+
agg_scores = {}
|
10 |
+
agg_scores["score"] = results[model].pop("Average")
|
11 |
+
agg_scores["subscenarios"] = results[model]
|
12 |
+
return agg_scores
|
13 |
+
|
14 |
+
def hallucination_i2t_agg(model, result_dir):
|
15 |
+
model = model.split("/")[-1]
|
16 |
+
result_path = os.path.join(result_dir, "hallucination_i2t_summary.json")
|
17 |
+
with open(result_path, "r") as file:
|
18 |
+
results = json.load(file)
|
19 |
+
agg_scores = {}
|
20 |
+
agg_scores["score"] = results[model].pop("Average")
|
21 |
+
agg_scores["subscenarios"] = results[model]
|
22 |
+
return agg_scores
|
utils/score_extract/ood_agg.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
def ood_t2i_agg(model, result_dir):
|
5 |
+
"""
|
6 |
+
Aggregate scores for the given testing models.
|
7 |
+
|
8 |
+
Parameters:
|
9 |
+
model (str): Model name.
|
10 |
+
result_dir (str): The path to the directory where the results are stored.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
dict: Output the overall score and the score of subscenarios in the format {"score": float, "subscenarios": dict}.
|
14 |
+
For example, OOD use subscenario like counting_shake as a subscenario
|
15 |
+
"""
|
16 |
+
result_path = os.path.join(result_dir, "ood_t2i_summary.json")
|
17 |
+
with open(result_path, "r") as file:
|
18 |
+
results = json.load(file)
|
19 |
+
agg_scores = {}
|
20 |
+
# for model in models:
|
21 |
+
# Only leave the model base name
|
22 |
+
model = model.split("/")[-1]
|
23 |
+
results_shake_fidelity = 0
|
24 |
+
results_shake_counting = 0
|
25 |
+
results_shake_spatial = 0
|
26 |
+
results_shake_color = 0
|
27 |
+
results_shake_size = 0
|
28 |
+
results_paraphrase_fidelity = 0
|
29 |
+
results_paraphrase_counting = 0
|
30 |
+
results_paraphrase_spatial = 0
|
31 |
+
results_paraphrase_color = 0
|
32 |
+
results_paraphrase_size = 0
|
33 |
+
|
34 |
+
for trial_id in [0, 1, 2]:
|
35 |
+
results_shake_fidelity += results[model][f'trial_{trial_id}']['fidelity']['Shake_']
|
36 |
+
results_shake_counting += results[model][f'trial_{trial_id}']['counting']['Shake_']
|
37 |
+
results_shake_spatial += results[model][f'trial_{trial_id}']['spatial']['Shake_']
|
38 |
+
results_shake_color += results[model][f'trial_{trial_id}']['color']['Shake_']
|
39 |
+
results_shake_size += results[model][f'trial_{trial_id}']['size']['Shake_']
|
40 |
+
results_paraphrase_fidelity += results[model][f'trial_{trial_id}']['fidelity']['Paraphrase_']
|
41 |
+
results_paraphrase_counting += results[model][f'trial_{trial_id}']['counting']['Paraphrase_']
|
42 |
+
results_paraphrase_spatial += results[model][f'trial_{trial_id}']['spatial']['Paraphrase_']
|
43 |
+
results_paraphrase_color += results[model][f'trial_{trial_id}']['color']['Paraphrase_']
|
44 |
+
results_paraphrase_size += results[model][f'trial_{trial_id}']['size']['Paraphrase_']
|
45 |
+
|
46 |
+
results_shake_fidelity = results_shake_fidelity * 100
|
47 |
+
results_shake_fidelity /= 3
|
48 |
+
results_shake_counting /= 3
|
49 |
+
results_shake_spatial /= 3
|
50 |
+
results_shake_color /= 3
|
51 |
+
results_shake_size /= 3
|
52 |
+
results_shake_attribute = (results_shake_color + results_shake_size) / 2
|
53 |
+
|
54 |
+
results_paraphrase_fidelity = results_paraphrase_fidelity * 100
|
55 |
+
results_paraphrase_fidelity /= 3
|
56 |
+
results_paraphrase_counting /= 3
|
57 |
+
results_paraphrase_spatial /= 3
|
58 |
+
results_paraphrase_color /= 3
|
59 |
+
results_paraphrase_size /= 3
|
60 |
+
results_attribute = (results_paraphrase_color + results_paraphrase_size) / 2
|
61 |
+
|
62 |
+
avg_shake = (results_shake_fidelity + results_shake_counting + results_shake_spatial + results_shake_attribute) / 4
|
63 |
+
avg_paraphrase = (results_paraphrase_fidelity + results_paraphrase_counting + results_paraphrase_spatial + results_attribute) / 4
|
64 |
+
agg_score = (avg_shake + avg_paraphrase) / 2
|
65 |
+
agg_scores["score"] = agg_score
|
66 |
+
agg_scores["subscenarios"] = {
|
67 |
+
"helpfulness_shake": results_shake_fidelity,
|
68 |
+
"counting_shake": results_shake_counting,
|
69 |
+
"spatial_shake": results_shake_spatial,
|
70 |
+
"attribute_shake": results_shake_attribute,
|
71 |
+
"helpfulness_rare": results_paraphrase_fidelity,
|
72 |
+
"counting_rare": results_paraphrase_counting,
|
73 |
+
"spatial_rare": results_paraphrase_spatial,
|
74 |
+
"attribute_rare": results_attribute
|
75 |
+
}
|
76 |
+
return agg_scores
|
77 |
+
# agg_scores[model] = agg_score
|
78 |
+
# return agg_scores
|
79 |
+
|
80 |
+
def ood_i2t_agg(model, result_dir):
|
81 |
+
"""
|
82 |
+
Aggregate scores for the given testing models.
|
83 |
+
|
84 |
+
Parameters:
|
85 |
+
model (str): Model name
|
86 |
+
result_dir (str): The path to the directory where the results are stored.
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
dict: Output the overall score and the score of subscenarios in the format {"score": float, "subscenarios": dict}.
|
90 |
+
For example, OOD use subscenario like counting_trans as a subscenario
|
91 |
+
"""
|
92 |
+
transformations = ["Van_Gogh", "oil_painting", "watercolour_painting"]
|
93 |
+
corruptions = [
|
94 |
+
"zoom_blur", "gaussian_noise", "pixelate"
|
95 |
+
]
|
96 |
+
|
97 |
+
|
98 |
+
result_path = os.path.join(result_dir, "ood_i2t_summary.json")
|
99 |
+
with open(result_path, "r") as file:
|
100 |
+
results = json.load(file)
|
101 |
+
|
102 |
+
agg_scores = {}
|
103 |
+
# for model in models:
|
104 |
+
# Only leave the model base name
|
105 |
+
model = model.split("/")[-1]
|
106 |
+
identification_corrupt = sum([results[model]['identification'][corrupt]["Score"] for corrupt in corruptions]) / 3
|
107 |
+
count_corrupt = sum([results[model]['count'][corrupt]["Score"] for corrupt in corruptions]) / 3
|
108 |
+
spatial_corrupt = sum([results[model]['spatial'][corrupt]["Score"] for corrupt in corruptions]) / 3
|
109 |
+
attribute_corrupt = sum([results[model]['attribute'][corrupt]["Score"] for corrupt in corruptions]) / 3
|
110 |
+
avg_corrupt = (identification_corrupt + count_corrupt + spatial_corrupt + attribute_corrupt) / 4
|
111 |
+
|
112 |
+
|
113 |
+
identification_transform = sum([results[model]['identification'][transform]["Score"] for transform in transformations]) / 3
|
114 |
+
count_transform = sum([results[model]['count'][transform]["Score"] for transform in transformations]) / 3
|
115 |
+
spatial_transform = sum([results[model]['spatial'][transform]["Score"] for transform in transformations]) / 3
|
116 |
+
attribute_transform = sum([results[model]['attribute'][transform]["Score"] for transform in transformations]) / 3
|
117 |
+
avg_transform = (identification_transform + count_transform + spatial_transform + attribute_transform) / 4
|
118 |
+
|
119 |
+
agg_scores["score"] = (avg_corrupt + avg_transform) / 2
|
120 |
+
agg_scores["subscenarios"] = {
|
121 |
+
"object_corrupt": identification_corrupt,
|
122 |
+
"counting_corrupt": count_corrupt,
|
123 |
+
"spatial_corrupt": spatial_corrupt,
|
124 |
+
"attribute_corrupt": attribute_corrupt,
|
125 |
+
"object_transform": identification_transform,
|
126 |
+
"counting_transform": count_transform,
|
127 |
+
"spatial_transform": spatial_transform,
|
128 |
+
"attribute_transform": attribute_transform
|
129 |
+
}
|
130 |
+
return agg_scores
|
131 |
+
# agg_scores[model] = agg_score
|
132 |
+
# return agg_scores
|
133 |
+
|
134 |
+
if __name__ == "__main__":
|
135 |
+
t2i_models = [ # Average time spent running the following example
|
136 |
+
"dall-e-2",
|
137 |
+
"dall-e-3",
|
138 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
139 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
140 |
+
"prompthero/openjourney-v4", # 4.981
|
141 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
142 |
+
]
|
143 |
+
i2t_models = [ # Average time spent running the following example
|
144 |
+
"gpt-4-vision-preview",
|
145 |
+
"gpt-4o-2024-05-13",
|
146 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
147 |
+
]
|
148 |
+
result_dir = "./data/results"
|
149 |
+
print(ood_i2t_agg(i2t_models[0], result_dir))
|
150 |
+
print(ood_t2i_agg(t2i_models[0], result_dir))
|
utils/score_extract/privacy_agg.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
def privacy_t2i_agg(model, result_dir):
|
5 |
+
model = model.split("/")[-1]
|
6 |
+
result_path = os.path.join(result_dir, "privacy_t2i_summary.json")
|
7 |
+
with open(result_path, "r") as file:
|
8 |
+
results = json.load(file)
|
9 |
+
agg_scores = {}
|
10 |
+
agg_scores["score"] = results[model].pop("Average")
|
11 |
+
agg_scores["subscenarios"] = results[model]
|
12 |
+
return agg_scores
|
13 |
+
|
14 |
+
def privacy_i2t_agg(model, result_dir):
|
15 |
+
model = model.split("/")[-1]
|
16 |
+
result_path = os.path.join(result_dir, "privacy_i2t_summary.json")
|
17 |
+
with open(result_path, "r") as file:
|
18 |
+
results = json.load(file)
|
19 |
+
agg_scores = {}
|
20 |
+
agg_scores["score"] = results[model].pop("Average")
|
21 |
+
agg_scores["subscenarios"] = results[model]
|
22 |
+
return agg_scores
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
t2i_models = [ # Average time spent running the following example
|
26 |
+
"dall-e-2",
|
27 |
+
"dall-e-3",
|
28 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
29 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
30 |
+
"prompthero/openjourney-v4", # 4.981
|
31 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
32 |
+
]
|
33 |
+
i2t_models = [ # Average time spent running the following example
|
34 |
+
"gpt-4-vision-preview",
|
35 |
+
"gpt-4o-2024-05-13",
|
36 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
37 |
+
]
|
38 |
+
result_dir = "./data/results"
|
39 |
+
print(privacy_i2t_agg(i2t_models[0], result_dir))
|
40 |
+
print(privacy_t2i_agg(t2i_models[0], result_dir))
|
utils/score_extract/safety_agg.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
def safety_t2i_agg(model, result_dir):
|
5 |
+
model = model.split("/")[-1]
|
6 |
+
result_path = os.path.join(result_dir, "safety_t2i_summary.json")
|
7 |
+
with open(result_path, "r") as file:
|
8 |
+
results = json.load(file)
|
9 |
+
agg_scores = {}
|
10 |
+
agg_scores["score"] = (1 - results[model].pop("Average")) * 100
|
11 |
+
# agg_scores["subscenarios"] = results[model]
|
12 |
+
agg_scores["subscenarios"] = {k: (1-v) * 100 for k, v in results[model].items()}
|
13 |
+
return agg_scores
|
14 |
+
|
15 |
+
def safety_i2t_agg(model, result_dir):
|
16 |
+
model = model.split("/")[-1]
|
17 |
+
result_path = os.path.join(result_dir, "safety_i2t_summary.json")
|
18 |
+
with open(result_path, "r") as file:
|
19 |
+
results = json.load(file)
|
20 |
+
agg_scores = {}
|
21 |
+
agg_scores["score"] = (1 - results[model].pop("Average")) * 100
|
22 |
+
agg_scores["subscenarios"] = {k: (1-v) * 100 for k, v in results[model].items()}
|
23 |
+
return agg_scores
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
t2i_models = [ # Average time spent running the following example
|
27 |
+
"dall-e-2",
|
28 |
+
"dall-e-3",
|
29 |
+
"DeepFloyd/IF-I-M-v1.0", # 15.372
|
30 |
+
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
|
31 |
+
"prompthero/openjourney-v4", # 4.981
|
32 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
|
33 |
+
]
|
34 |
+
i2t_models = [ # Average time spent running the following example
|
35 |
+
"gpt-4-vision-preview",
|
36 |
+
"gpt-4o-2024-05-13",
|
37 |
+
"llava-hf/llava-v1.6-vicuna-7b-hf"
|
38 |
+
]
|
39 |
+
result_dir = "./data/results"
|
40 |
+
print(safety_i2t_agg(i2t_models[0], result_dir))
|
41 |
+
print(safety_t2i_agg(t2i_models[0], result_dir))
|