import torch import imageio import os import gradio as gr import subprocess from subprocess import getoutput from diffusers.schedulers import EulerAncestralDiscreteScheduler from transformers import T5EncoderModel, T5Tokenizer from allegro.pipelines.pipeline_allegro import AllegroPipeline from allegro.models.vae.vae_allegro import AllegroAutoencoderKL3D from allegro.models.transformers.transformer_3d_allegro import AllegroTransformer3DModel # from allegro.models.transformers.block import AttnProcessor2_0 from huggingface_hub import snapshot_download # # Override attention processor initialization # AttnProcessor2_0.__init__ = lambda self, *args, **kwargs: super(AttnProcessor2_0, self).__init__() weights_dir = './allegro_weights' os.makedirs(weights_dir, exist_ok=True) is_shared_ui = False is_gpu_associated = torch.cuda.is_available() # Download weights if not present if not os.path.exists(weights_dir): snapshot_download( repo_id='rhymes-ai/Allegro', allow_patterns=[ 'scheduler/**', 'text_encoder/**', 'tokenizer/**', 'transformer/**', 'vae/**', ], local_dir=weights_dir, ) def single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload): dtype = torch.float16 # Changed from torch.bfloat16 # Load models vae = AllegroAutoencoderKL3D.from_pretrained( "./allegro_weights/vae/", torch_dtype=torch.float32 ).cuda() vae.eval() text_encoder = T5EncoderModel.from_pretrained("./allegro_weights/text_encoder/", torch_dtype=dtype) text_encoder.eval() tokenizer = T5Tokenizer.from_pretrained("./allegro_weights/tokenizer/") scheduler = EulerAncestralDiscreteScheduler() transformer = AllegroTransformer3DModel.from_pretrained("./allegro_weights/transformer/", torch_dtype=dtype).cuda() transformer.eval() allegro_pipeline = AllegroPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, transformer=transformer ).to("cuda:0") positive_prompt = """ (masterpiece), (best quality), (ultra-detailed), (unwatermarked), {} emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo, sharp focus, high budget, cinemascope, moody, epic, gorgeous """ negative_prompt = """ nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry. """ # Process user prompt user_prompt = positive_prompt.format(user_prompt.lower().strip()) if enable_cpu_offload: allegro_pipeline.enable_sequential_cpu_offload() # Clear memory before generation # torch.cuda.empty_cache() out_video = allegro_pipeline( user_prompt, negative_prompt=negative_prompt, num_frames=88, height=720, width=1280, num_inference_steps=num_sampling_steps, guidance_scale=guidance_scale, max_sequence_length=512, generator=torch.Generator(device="cuda:0").manual_seed(seed) ).video[0] # Save video os.makedirs(os.path.dirname(save_path), exist_ok=True) imageio.mimwrite(save_path, out_video, fps=15, quality=8) return save_path # Gradio interface function def run_inference(user_prompt, guidance_scale, num_sampling_steps, seed, enable_cpu_offload, progress=gr.Progress(track_tqdm=True)): save_path = "./output_videos/generated_video.mp4" result_path = single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload) return result_path # Create Gradio interface with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# Allegro Video Generation") gr.Markdown("Generate a video based on a text prompt using the Allegro pipeline.") user_prompt = gr.Textbox(label="User Prompt") with gr.Row(): guidance_scale = gr.Slider(minimum=0, maximum=20, step=0.1, label="Guidance Scale", value=7.5) num_sampling_steps = gr.Slider(minimum=10, maximum=100, step=1, label="Number of Sampling Steps", value=20) with gr.Row(): seed = gr.Slider(minimum=0, maximum=10000, step=1, label="Random Seed", value=42) enable_cpu_offload = gr.Checkbox(label="Enable CPU Offload", value=True, scale=1) submit_btn = gr.Button("Generate Video") video_output = gr.Video(label="Generated Video") gr.Examples( examples=[ ["A Monkey is playing bass guitar."], ["An astronaut riding a horse."], ["A tiny finch on a branch with spring flowers on background."] ], inputs=[user_prompt], outputs=video_output, fn=lambda x: None, cache_examples=False ) submit_btn.click( fn=run_inference, inputs=[user_prompt, guidance_scale, num_sampling_steps, seed, enable_cpu_offload], outputs=video_output ) # Launch the interface demo.launch(show_error=True)