Spaces:
Runtime error
Runtime error
AI-Anchorite
commited on
Commit
•
abe2421
1
Parent(s):
c178cab
Update gradio_app.py
Browse files- gradio_app.py +26 -151
gradio_app.py
CHANGED
@@ -4,21 +4,27 @@ import os
|
|
4 |
import gradio as gr
|
5 |
import subprocess
|
6 |
from subprocess import getoutput
|
|
|
7 |
from diffusers.schedulers import EulerAncestralDiscreteScheduler
|
8 |
from transformers import T5EncoderModel, T5Tokenizer
|
9 |
from allegro.pipelines.pipeline_allegro import AllegroPipeline
|
10 |
from allegro.models.vae.vae_allegro import AllegroAutoencoderKL3D
|
11 |
from allegro.models.transformers.transformer_3d_allegro import AllegroTransformer3DModel
|
|
|
12 |
|
13 |
from huggingface_hub import snapshot_download
|
14 |
|
|
|
|
|
|
|
15 |
weights_dir = './allegro_weights'
|
16 |
os.makedirs(weights_dir, exist_ok=True)
|
17 |
|
18 |
-
is_shared_ui =
|
19 |
is_gpu_associated = torch.cuda.is_available()
|
20 |
|
21 |
-
if not
|
|
|
22 |
snapshot_download(
|
23 |
repo_id='rhymes-ai/Allegro',
|
24 |
allow_patterns=[
|
@@ -31,11 +37,8 @@ if not is_shared_ui:
|
|
31 |
local_dir=weights_dir,
|
32 |
)
|
33 |
|
34 |
-
if is_gpu_associated:
|
35 |
-
gpu_info = getoutput('nvidia-smi')
|
36 |
-
|
37 |
def single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload):
|
38 |
-
dtype = torch.bfloat16
|
39 |
|
40 |
# Load models
|
41 |
vae = AllegroAutoencoderKL3D.from_pretrained(
|
@@ -80,6 +83,9 @@ def single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps,
|
|
80 |
if enable_cpu_offload:
|
81 |
allegro_pipeline.enable_sequential_cpu_offload()
|
82 |
|
|
|
|
|
|
|
83 |
out_video = allegro_pipeline(
|
84 |
user_prompt,
|
85 |
negative_prompt=negative_prompt,
|
@@ -105,152 +111,22 @@ def run_inference(user_prompt, guidance_scale, num_sampling_steps, seed, enable_
|
|
105 |
result_path = single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload)
|
106 |
return result_path
|
107 |
|
108 |
-
css="""
|
109 |
-
div#col-container{
|
110 |
-
margin: 0 auto;
|
111 |
-
max-width: 800px;
|
112 |
-
}
|
113 |
-
div#warning-ready {
|
114 |
-
background-color: #ecfdf5;
|
115 |
-
padding: 0 16px 16px;
|
116 |
-
margin: 20px 0;
|
117 |
-
color: #030303!important;
|
118 |
-
}
|
119 |
-
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
|
120 |
-
color: #057857!important;
|
121 |
-
}
|
122 |
-
div#warning-duplicate {
|
123 |
-
background-color: #ebf5ff;
|
124 |
-
padding: 0 16px 16px;
|
125 |
-
margin: 20px 0;
|
126 |
-
color: #030303!important;
|
127 |
-
}
|
128 |
-
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
|
129 |
-
color: #0f4592!important;
|
130 |
-
}
|
131 |
-
div#warning-duplicate strong {
|
132 |
-
color: #0f4592;
|
133 |
-
}
|
134 |
-
p.actions {
|
135 |
-
display: flex;
|
136 |
-
align-items: center;
|
137 |
-
margin: 20px 0;
|
138 |
-
}
|
139 |
-
div#warning-duplicate .actions a {
|
140 |
-
display: inline-block;
|
141 |
-
margin-right: 10px;
|
142 |
-
}
|
143 |
-
div#warning-setgpu {
|
144 |
-
background-color: #fff4eb;
|
145 |
-
padding: 0 16px 16px;
|
146 |
-
margin: 20px 0;
|
147 |
-
color: #030303!important;
|
148 |
-
}
|
149 |
-
div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p {
|
150 |
-
color: #92220f!important;
|
151 |
-
}
|
152 |
-
div#warning-setgpu a, div#warning-setgpu b {
|
153 |
-
color: #91230f;
|
154 |
-
}
|
155 |
-
div#warning-setgpu p.actions > a {
|
156 |
-
display: inline-block;
|
157 |
-
background: #1f1f23;
|
158 |
-
border-radius: 40px;
|
159 |
-
padding: 6px 24px;
|
160 |
-
color: antiquewhite;
|
161 |
-
text-decoration: none;
|
162 |
-
font-weight: 600;
|
163 |
-
font-size: 1.2em;
|
164 |
-
}
|
165 |
-
div#warning-setsleeptime {
|
166 |
-
background-color: #fff4eb;
|
167 |
-
padding: 10px 10px;
|
168 |
-
margin: 0!important;
|
169 |
-
color: #030303!important;
|
170 |
-
}
|
171 |
-
.custom-color {
|
172 |
-
color: #030303 !important;
|
173 |
-
}
|
174 |
-
"""
|
175 |
-
|
176 |
# Create Gradio interface
|
177 |
-
with gr.Blocks(
|
178 |
-
with gr.Column(
|
179 |
gr.Markdown("# Allegro Video Generation")
|
180 |
gr.Markdown("Generate a video based on a text prompt using the Allegro pipeline.")
|
181 |
-
|
182 |
-
|
183 |
-
<a href='https://huggingface.co/rhymes-ai/Allegro'>
|
184 |
-
<img src='https://img.shields.io/badge/HuggingFace-Model-orange'>
|
185 |
-
</a>
|
186 |
-
<a href='https://github.com/rhymes-ai/Allegro/tree/main'>
|
187 |
-
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
|
188 |
-
</a>
|
189 |
-
<a href='https://arxiv.org/abs/2410.15458'>
|
190 |
-
<img src='https://img.shields.io/badge/ArXivPaper-red'>
|
191 |
-
</a>
|
192 |
-
</div>
|
193 |
-
""")
|
194 |
-
user_prompt=gr.Textbox(label="User Prompt")
|
195 |
with gr.Row():
|
196 |
-
guidance_scale=gr.Slider(minimum=0, maximum=20, step=0.1, label="Guidance Scale", value=7.5)
|
197 |
-
num_sampling_steps=gr.Slider(minimum=10, maximum=100, step=1, label="Number of Sampling Steps", value=20)
|
198 |
with gr.Row():
|
199 |
-
seed=gr.Slider(minimum=0, maximum=10000, step=1, label="Random Seed", value=42)
|
200 |
-
enable_cpu_offload=gr.Checkbox(label="Enable CPU Offload", value=
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
|
205 |
-
Attention: this Space need to be duplicated to work</h2>
|
206 |
-
<p class="main-message custom-color">
|
207 |
-
To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU.<br />
|
208 |
-
You'll be able to offload the model into CPU for less GPU memory cost (about 9.3G, compared to 27.5G if CPU offload is not enabled), but the inference time will increase significantly.
|
209 |
-
</p>
|
210 |
-
<p class="actions custom-color">
|
211 |
-
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
|
212 |
-
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
|
213 |
-
</a>
|
214 |
-
</p>
|
215 |
-
</div>
|
216 |
-
''', elem_id="warning-duplicate")
|
217 |
-
submit_btn = gr.Button("Generate Video", visible=False)
|
218 |
-
else:
|
219 |
-
if(is_gpu_associated):
|
220 |
-
submit_btn = gr.Button("Generate Video", visible=True)
|
221 |
-
top_description = gr.HTML(f'''
|
222 |
-
<div class="gr-prose">
|
223 |
-
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
|
224 |
-
You have successfully associated a GPU to this Space 🎉</h2>
|
225 |
-
<p class="custom-color">
|
226 |
-
You can now generate a video! You will be billed by the minute from when you activated the GPU until when it is turned off.
|
227 |
-
You can offload the model into CPU for less GPU memory cost (about 9.3G, compared to 27.5G if CPU offload is not enabled), but the inference time will increase significantly.
|
228 |
-
</p>
|
229 |
-
</div>
|
230 |
-
''', elem_id="warning-ready")
|
231 |
-
else:
|
232 |
-
top_description = gr.HTML(f'''
|
233 |
-
<div class="gr-prose">
|
234 |
-
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
|
235 |
-
You have successfully duplicated the Allegro Video Generation Space 🎉</h2>
|
236 |
-
<p class="custom-color">There's only one step left before you can generate a video: we recommend to <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a L40S GPU</b> to it (via the Settings tab)</a>.
|
237 |
-
You will be billed by the minute from when you activate the GPU until when it is turned off.</p>
|
238 |
-
<p class="actions custom-color">
|
239 |
-
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">🔥 Set recommended GPU</a>
|
240 |
-
</p>
|
241 |
-
</div>
|
242 |
-
''', elem_id="warning-setgpu")
|
243 |
-
submit_btn = gr.Button("Generate Video", visible=False)
|
244 |
-
|
245 |
-
video_output=gr.Video(label="Generated Video")
|
246 |
-
|
247 |
-
def load_allegro_examples(prompt):
|
248 |
-
if prompt == "A Monkey is playing bass guitar.":
|
249 |
-
return "https://rhymes.ai/allegroVideos/30_demo_w_watermark_prompt_1018/11.mp4"
|
250 |
-
elif prompt == "An astronaut riding a horse.":
|
251 |
-
return "https://rhymes.ai/allegroVideos/30_demo_w_watermark_prompt_1018/15.mp4"
|
252 |
-
elif prompt == "A tiny finch on a branch with spring flowers on background.":
|
253 |
-
return "https://rhymes.ai/allegroVideos/30_demo_w_watermark_prompt_1018/22.mp4"
|
254 |
|
255 |
gr.Examples(
|
256 |
examples=[
|
@@ -258,11 +134,10 @@ with gr.Blocks(css=css) as demo:
|
|
258 |
["An astronaut riding a horse."],
|
259 |
["A tiny finch on a branch with spring flowers on background."]
|
260 |
],
|
261 |
-
fn=load_allegro_examples,
|
262 |
inputs=[user_prompt],
|
263 |
outputs=video_output,
|
264 |
-
|
265 |
-
|
266 |
)
|
267 |
|
268 |
submit_btn.click(
|
@@ -272,4 +147,4 @@ with gr.Blocks(css=css) as demo:
|
|
272 |
)
|
273 |
|
274 |
# Launch the interface
|
275 |
-
demo.launch(show_error=True
|
|
|
4 |
import gradio as gr
|
5 |
import subprocess
|
6 |
from subprocess import getoutput
|
7 |
+
|
8 |
from diffusers.schedulers import EulerAncestralDiscreteScheduler
|
9 |
from transformers import T5EncoderModel, T5Tokenizer
|
10 |
from allegro.pipelines.pipeline_allegro import AllegroPipeline
|
11 |
from allegro.models.vae.vae_allegro import AllegroAutoencoderKL3D
|
12 |
from allegro.models.transformers.transformer_3d_allegro import AllegroTransformer3DModel
|
13 |
+
# from allegro.models.transformers.block import AttnProcessor2_0
|
14 |
|
15 |
from huggingface_hub import snapshot_download
|
16 |
|
17 |
+
# # Override attention processor initialization
|
18 |
+
# AttnProcessor2_0.__init__ = lambda self, *args, **kwargs: super(AttnProcessor2_0, self).__init__()
|
19 |
+
|
20 |
weights_dir = './allegro_weights'
|
21 |
os.makedirs(weights_dir, exist_ok=True)
|
22 |
|
23 |
+
is_shared_ui = False
|
24 |
is_gpu_associated = torch.cuda.is_available()
|
25 |
|
26 |
+
# Download weights if not present
|
27 |
+
if not os.path.exists(weights_dir):
|
28 |
snapshot_download(
|
29 |
repo_id='rhymes-ai/Allegro',
|
30 |
allow_patterns=[
|
|
|
37 |
local_dir=weights_dir,
|
38 |
)
|
39 |
|
|
|
|
|
|
|
40 |
def single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload):
|
41 |
+
dtype = torch.float16 # Changed from torch.bfloat16
|
42 |
|
43 |
# Load models
|
44 |
vae = AllegroAutoencoderKL3D.from_pretrained(
|
|
|
83 |
if enable_cpu_offload:
|
84 |
allegro_pipeline.enable_sequential_cpu_offload()
|
85 |
|
86 |
+
# Clear memory before generation
|
87 |
+
# torch.cuda.empty_cache()
|
88 |
+
|
89 |
out_video = allegro_pipeline(
|
90 |
user_prompt,
|
91 |
negative_prompt=negative_prompt,
|
|
|
111 |
result_path = single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload)
|
112 |
return result_path
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
# Create Gradio interface
|
115 |
+
with gr.Blocks() as demo:
|
116 |
+
with gr.Column():
|
117 |
gr.Markdown("# Allegro Video Generation")
|
118 |
gr.Markdown("Generate a video based on a text prompt using the Allegro pipeline.")
|
119 |
+
|
120 |
+
user_prompt = gr.Textbox(label="User Prompt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
with gr.Row():
|
122 |
+
guidance_scale = gr.Slider(minimum=0, maximum=20, step=0.1, label="Guidance Scale", value=7.5)
|
123 |
+
num_sampling_steps = gr.Slider(minimum=10, maximum=100, step=1, label="Number of Sampling Steps", value=20)
|
124 |
with gr.Row():
|
125 |
+
seed = gr.Slider(minimum=0, maximum=10000, step=1, label="Random Seed", value=42)
|
126 |
+
enable_cpu_offload = gr.Checkbox(label="Enable CPU Offload", value=True, scale=1)
|
127 |
+
|
128 |
+
submit_btn = gr.Button("Generate Video")
|
129 |
+
video_output = gr.Video(label="Generated Video")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
gr.Examples(
|
132 |
examples=[
|
|
|
134 |
["An astronaut riding a horse."],
|
135 |
["A tiny finch on a branch with spring flowers on background."]
|
136 |
],
|
|
|
137 |
inputs=[user_prompt],
|
138 |
outputs=video_output,
|
139 |
+
fn=lambda x: None,
|
140 |
+
cache_examples=False
|
141 |
)
|
142 |
|
143 |
submit_btn.click(
|
|
|
147 |
)
|
148 |
|
149 |
# Launch the interface
|
150 |
+
demo.launch(show_error=True)
|