Spaces:
Runtime error
Runtime error
AI-Anchorite
commited on
Commit
•
3ed9da5
1
Parent(s):
4e18f8a
Upload block.py
Browse files- allegro/models/transformers/block.py +1200 -0
allegro/models/transformers/block.py
ADDED
@@ -0,0 +1,1200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from Open-Sora-Plan
|
2 |
+
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
# --------------------------------------------------------
|
6 |
+
# References:
|
7 |
+
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
|
11 |
+
from importlib import import_module
|
12 |
+
from typing import Any, Callable, Dict, Optional, Tuple
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import collections
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
19 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
20 |
+
from diffusers.models.attention_processor import (
|
21 |
+
AttnAddedKVProcessor,
|
22 |
+
AttnAddedKVProcessor2_0,
|
23 |
+
AttnProcessor,
|
24 |
+
CustomDiffusionAttnProcessor,
|
25 |
+
CustomDiffusionAttnProcessor2_0,
|
26 |
+
CustomDiffusionXFormersAttnProcessor,
|
27 |
+
LoRAAttnAddedKVProcessor,
|
28 |
+
LoRAAttnProcessor,
|
29 |
+
LoRAAttnProcessor2_0,
|
30 |
+
LoRAXFormersAttnProcessor,
|
31 |
+
SlicedAttnAddedKVProcessor,
|
32 |
+
SlicedAttnProcessor,
|
33 |
+
SpatialNorm,
|
34 |
+
XFormersAttnAddedKVProcessor,
|
35 |
+
XFormersAttnProcessor,
|
36 |
+
)
|
37 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
38 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero
|
39 |
+
from diffusers.utils import USE_PEFT_BACKEND, deprecate, is_xformers_available
|
40 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
41 |
+
from torch import nn
|
42 |
+
|
43 |
+
from allegro.models.transformers.rope import RoPE3D, PositionGetter3D
|
44 |
+
from allegro.models.transformers.embedding import CombinedTimestepSizeEmbeddings
|
45 |
+
|
46 |
+
if is_xformers_available():
|
47 |
+
import xformers
|
48 |
+
import xformers.ops
|
49 |
+
else:
|
50 |
+
xformers = None
|
51 |
+
|
52 |
+
from diffusers.utils import logging
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
|
56 |
+
|
57 |
+
def to_2tuple(x):
|
58 |
+
if isinstance(x, collections.abc.Iterable):
|
59 |
+
return x
|
60 |
+
return (x, x)
|
61 |
+
|
62 |
+
|
63 |
+
@maybe_allow_in_graph
|
64 |
+
class Attention(nn.Module):
|
65 |
+
r"""
|
66 |
+
A cross attention layer.
|
67 |
+
|
68 |
+
Parameters:
|
69 |
+
query_dim (`int`):
|
70 |
+
The number of channels in the query.
|
71 |
+
cross_attention_dim (`int`, *optional*):
|
72 |
+
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
|
73 |
+
heads (`int`, *optional*, defaults to 8):
|
74 |
+
The number of heads to use for multi-head attention.
|
75 |
+
dim_head (`int`, *optional*, defaults to 64):
|
76 |
+
The number of channels in each head.
|
77 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
78 |
+
The dropout probability to use.
|
79 |
+
bias (`bool`, *optional*, defaults to False):
|
80 |
+
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
|
81 |
+
upcast_attention (`bool`, *optional*, defaults to False):
|
82 |
+
Set to `True` to upcast the attention computation to `float32`.
|
83 |
+
upcast_softmax (`bool`, *optional*, defaults to False):
|
84 |
+
Set to `True` to upcast the softmax computation to `float32`.
|
85 |
+
cross_attention_norm (`str`, *optional*, defaults to `None`):
|
86 |
+
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
|
87 |
+
cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
|
88 |
+
The number of groups to use for the group norm in the cross attention.
|
89 |
+
added_kv_proj_dim (`int`, *optional*, defaults to `None`):
|
90 |
+
The number of channels to use for the added key and value projections. If `None`, no projection is used.
|
91 |
+
norm_num_groups (`int`, *optional*, defaults to `None`):
|
92 |
+
The number of groups to use for the group norm in the attention.
|
93 |
+
spatial_norm_dim (`int`, *optional*, defaults to `None`):
|
94 |
+
The number of channels to use for the spatial normalization.
|
95 |
+
out_bias (`bool`, *optional*, defaults to `True`):
|
96 |
+
Set to `True` to use a bias in the output linear layer.
|
97 |
+
scale_qk (`bool`, *optional*, defaults to `True`):
|
98 |
+
Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
|
99 |
+
only_cross_attention (`bool`, *optional*, defaults to `False`):
|
100 |
+
Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
|
101 |
+
`added_kv_proj_dim` is not `None`.
|
102 |
+
eps (`float`, *optional*, defaults to 1e-5):
|
103 |
+
An additional value added to the denominator in group normalization that is used for numerical stability.
|
104 |
+
rescale_output_factor (`float`, *optional*, defaults to 1.0):
|
105 |
+
A factor to rescale the output by dividing it with this value.
|
106 |
+
residual_connection (`bool`, *optional*, defaults to `False`):
|
107 |
+
Set to `True` to add the residual connection to the output.
|
108 |
+
_from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
|
109 |
+
Set to `True` if the attention block is loaded from a deprecated state dict.
|
110 |
+
processor (`AttnProcessor`, *optional*, defaults to `None`):
|
111 |
+
The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
|
112 |
+
`AttnProcessor` otherwise.
|
113 |
+
"""
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
query_dim: int,
|
118 |
+
cross_attention_dim: Optional[int] = None,
|
119 |
+
heads: int = 8,
|
120 |
+
dim_head: int = 64,
|
121 |
+
dropout: float = 0.0,
|
122 |
+
bias: bool = False,
|
123 |
+
upcast_attention: bool = False,
|
124 |
+
upcast_softmax: bool = False,
|
125 |
+
cross_attention_norm: Optional[str] = None,
|
126 |
+
cross_attention_norm_num_groups: int = 32,
|
127 |
+
added_kv_proj_dim: Optional[int] = None,
|
128 |
+
norm_num_groups: Optional[int] = None,
|
129 |
+
spatial_norm_dim: Optional[int] = None,
|
130 |
+
out_bias: bool = True,
|
131 |
+
scale_qk: bool = True,
|
132 |
+
only_cross_attention: bool = False,
|
133 |
+
eps: float = 1e-5,
|
134 |
+
rescale_output_factor: float = 1.0,
|
135 |
+
residual_connection: bool = False,
|
136 |
+
_from_deprecated_attn_block: bool = False,
|
137 |
+
processor: Optional["AttnProcessor"] = None,
|
138 |
+
attention_mode: str = "xformers",
|
139 |
+
use_rope: bool = False,
|
140 |
+
interpolation_scale_thw=None,
|
141 |
+
):
|
142 |
+
super().__init__()
|
143 |
+
self.inner_dim = dim_head * heads
|
144 |
+
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
145 |
+
self.upcast_attention = upcast_attention
|
146 |
+
self.upcast_softmax = upcast_softmax
|
147 |
+
self.rescale_output_factor = rescale_output_factor
|
148 |
+
self.residual_connection = residual_connection
|
149 |
+
self.dropout = dropout
|
150 |
+
self.use_rope = use_rope
|
151 |
+
|
152 |
+
# we make use of this private variable to know whether this class is loaded
|
153 |
+
# with an deprecated state dict so that we can convert it on the fly
|
154 |
+
self._from_deprecated_attn_block = _from_deprecated_attn_block
|
155 |
+
|
156 |
+
self.scale_qk = scale_qk
|
157 |
+
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
158 |
+
|
159 |
+
self.heads = heads
|
160 |
+
# for slice_size > 0 the attention score computation
|
161 |
+
# is split across the batch axis to save memory
|
162 |
+
# You can set slice_size with `set_attention_slice`
|
163 |
+
self.sliceable_head_dim = heads
|
164 |
+
|
165 |
+
self.added_kv_proj_dim = added_kv_proj_dim
|
166 |
+
self.only_cross_attention = only_cross_attention
|
167 |
+
|
168 |
+
if self.added_kv_proj_dim is None and self.only_cross_attention:
|
169 |
+
raise ValueError(
|
170 |
+
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
|
171 |
+
)
|
172 |
+
|
173 |
+
if norm_num_groups is not None:
|
174 |
+
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
|
175 |
+
else:
|
176 |
+
self.group_norm = None
|
177 |
+
|
178 |
+
if spatial_norm_dim is not None:
|
179 |
+
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
|
180 |
+
else:
|
181 |
+
self.spatial_norm = None
|
182 |
+
|
183 |
+
if cross_attention_norm is None:
|
184 |
+
self.norm_cross = None
|
185 |
+
elif cross_attention_norm == "layer_norm":
|
186 |
+
self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
|
187 |
+
elif cross_attention_norm == "group_norm":
|
188 |
+
if self.added_kv_proj_dim is not None:
|
189 |
+
# The given `encoder_hidden_states` are initially of shape
|
190 |
+
# (batch_size, seq_len, added_kv_proj_dim) before being projected
|
191 |
+
# to (batch_size, seq_len, cross_attention_dim). The norm is applied
|
192 |
+
# before the projection, so we need to use `added_kv_proj_dim` as
|
193 |
+
# the number of channels for the group norm.
|
194 |
+
norm_cross_num_channels = added_kv_proj_dim
|
195 |
+
else:
|
196 |
+
norm_cross_num_channels = self.cross_attention_dim
|
197 |
+
|
198 |
+
self.norm_cross = nn.GroupNorm(
|
199 |
+
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
|
200 |
+
)
|
201 |
+
else:
|
202 |
+
raise ValueError(
|
203 |
+
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
|
204 |
+
)
|
205 |
+
|
206 |
+
linear_cls = nn.Linear
|
207 |
+
|
208 |
+
|
209 |
+
self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias)
|
210 |
+
|
211 |
+
if not self.only_cross_attention:
|
212 |
+
# only relevant for the `AddedKVProcessor` classes
|
213 |
+
self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
|
214 |
+
self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
|
215 |
+
else:
|
216 |
+
self.to_k = None
|
217 |
+
self.to_v = None
|
218 |
+
|
219 |
+
if self.added_kv_proj_dim is not None:
|
220 |
+
self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
|
221 |
+
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
|
222 |
+
|
223 |
+
self.to_out = nn.ModuleList([])
|
224 |
+
self.to_out.append(linear_cls(self.inner_dim, query_dim, bias=out_bias))
|
225 |
+
self.to_out.append(nn.Dropout(dropout))
|
226 |
+
|
227 |
+
# set attention processor
|
228 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
229 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
230 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
231 |
+
if processor is None:
|
232 |
+
processor = (
|
233 |
+
AttnProcessor2_0(
|
234 |
+
attention_mode,
|
235 |
+
use_rope,
|
236 |
+
interpolation_scale_thw=interpolation_scale_thw,
|
237 |
+
)
|
238 |
+
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
|
239 |
+
else AttnProcessor()
|
240 |
+
)
|
241 |
+
self.set_processor(processor)
|
242 |
+
|
243 |
+
def set_use_memory_efficient_attention_xformers(
|
244 |
+
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
|
245 |
+
) -> None:
|
246 |
+
r"""
|
247 |
+
Set whether to use memory efficient attention from `xformers` or not.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
use_memory_efficient_attention_xformers (`bool`):
|
251 |
+
Whether to use memory efficient attention from `xformers` or not.
|
252 |
+
attention_op (`Callable`, *optional*):
|
253 |
+
The attention operation to use. Defaults to `None` which uses the default attention operation from
|
254 |
+
`xformers`.
|
255 |
+
"""
|
256 |
+
is_lora = hasattr(self, "processor")
|
257 |
+
is_custom_diffusion = hasattr(self, "processor") and isinstance(
|
258 |
+
self.processor,
|
259 |
+
(CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0),
|
260 |
+
)
|
261 |
+
is_added_kv_processor = hasattr(self, "processor") and isinstance(
|
262 |
+
self.processor,
|
263 |
+
(
|
264 |
+
AttnAddedKVProcessor,
|
265 |
+
AttnAddedKVProcessor2_0,
|
266 |
+
SlicedAttnAddedKVProcessor,
|
267 |
+
XFormersAttnAddedKVProcessor,
|
268 |
+
LoRAAttnAddedKVProcessor,
|
269 |
+
),
|
270 |
+
)
|
271 |
+
|
272 |
+
if use_memory_efficient_attention_xformers:
|
273 |
+
if is_added_kv_processor and (is_lora or is_custom_diffusion):
|
274 |
+
raise NotImplementedError(
|
275 |
+
f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}"
|
276 |
+
)
|
277 |
+
if not is_xformers_available():
|
278 |
+
raise ModuleNotFoundError(
|
279 |
+
(
|
280 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
281 |
+
" xformers"
|
282 |
+
),
|
283 |
+
name="xformers",
|
284 |
+
)
|
285 |
+
elif not torch.cuda.is_available():
|
286 |
+
raise ValueError(
|
287 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
|
288 |
+
" only available for GPU "
|
289 |
+
)
|
290 |
+
else:
|
291 |
+
try:
|
292 |
+
# Make sure we can run the memory efficient attention
|
293 |
+
_ = xformers.ops.memory_efficient_attention(
|
294 |
+
torch.randn((1, 2, 40), device="cuda"),
|
295 |
+
torch.randn((1, 2, 40), device="cuda"),
|
296 |
+
torch.randn((1, 2, 40), device="cuda"),
|
297 |
+
)
|
298 |
+
except Exception as e:
|
299 |
+
raise e
|
300 |
+
|
301 |
+
if is_lora:
|
302 |
+
# TODO (sayakpaul): should we throw a warning if someone wants to use the xformers
|
303 |
+
# variant when using PT 2.0 now that we have LoRAAttnProcessor2_0?
|
304 |
+
processor = LoRAXFormersAttnProcessor(
|
305 |
+
hidden_size=self.processor.hidden_size,
|
306 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
307 |
+
rank=self.processor.rank,
|
308 |
+
attention_op=attention_op,
|
309 |
+
)
|
310 |
+
processor.load_state_dict(self.processor.state_dict())
|
311 |
+
processor.to(self.processor.to_q_lora.up.weight.device)
|
312 |
+
elif is_custom_diffusion:
|
313 |
+
processor = CustomDiffusionXFormersAttnProcessor(
|
314 |
+
train_kv=self.processor.train_kv,
|
315 |
+
train_q_out=self.processor.train_q_out,
|
316 |
+
hidden_size=self.processor.hidden_size,
|
317 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
318 |
+
attention_op=attention_op,
|
319 |
+
)
|
320 |
+
processor.load_state_dict(self.processor.state_dict())
|
321 |
+
if hasattr(self.processor, "to_k_custom_diffusion"):
|
322 |
+
processor.to(self.processor.to_k_custom_diffusion.weight.device)
|
323 |
+
elif is_added_kv_processor:
|
324 |
+
# TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
|
325 |
+
# which uses this type of cross attention ONLY because the attention mask of format
|
326 |
+
# [0, ..., -10.000, ..., 0, ...,] is not supported
|
327 |
+
# throw warning
|
328 |
+
logger.info(
|
329 |
+
"Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
|
330 |
+
)
|
331 |
+
processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
|
332 |
+
else:
|
333 |
+
processor = XFormersAttnProcessor(attention_op=attention_op)
|
334 |
+
else:
|
335 |
+
if is_lora:
|
336 |
+
attn_processor_class = (
|
337 |
+
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
338 |
+
)
|
339 |
+
processor = attn_processor_class(
|
340 |
+
hidden_size=self.processor.hidden_size,
|
341 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
342 |
+
rank=self.processor.rank,
|
343 |
+
)
|
344 |
+
processor.load_state_dict(self.processor.state_dict())
|
345 |
+
processor.to(self.processor.to_q_lora.up.weight.device)
|
346 |
+
elif is_custom_diffusion:
|
347 |
+
attn_processor_class = (
|
348 |
+
CustomDiffusionAttnProcessor2_0
|
349 |
+
if hasattr(F, "scaled_dot_product_attention")
|
350 |
+
else CustomDiffusionAttnProcessor
|
351 |
+
)
|
352 |
+
processor = attn_processor_class(
|
353 |
+
train_kv=self.processor.train_kv,
|
354 |
+
train_q_out=self.processor.train_q_out,
|
355 |
+
hidden_size=self.processor.hidden_size,
|
356 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
357 |
+
)
|
358 |
+
processor.load_state_dict(self.processor.state_dict())
|
359 |
+
if hasattr(self.processor, "to_k_custom_diffusion"):
|
360 |
+
processor.to(self.processor.to_k_custom_diffusion.weight.device)
|
361 |
+
else:
|
362 |
+
# set attention processor
|
363 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
364 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
365 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
366 |
+
processor = (
|
367 |
+
AttnProcessor2_0()
|
368 |
+
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
|
369 |
+
else AttnProcessor()
|
370 |
+
)
|
371 |
+
|
372 |
+
self.set_processor(processor)
|
373 |
+
|
374 |
+
def set_attention_slice(self, slice_size: int) -> None:
|
375 |
+
r"""
|
376 |
+
Set the slice size for attention computation.
|
377 |
+
|
378 |
+
Args:
|
379 |
+
slice_size (`int`):
|
380 |
+
The slice size for attention computation.
|
381 |
+
"""
|
382 |
+
if slice_size is not None and slice_size > self.sliceable_head_dim:
|
383 |
+
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
|
384 |
+
|
385 |
+
if slice_size is not None and self.added_kv_proj_dim is not None:
|
386 |
+
processor = SlicedAttnAddedKVProcessor(slice_size)
|
387 |
+
elif slice_size is not None:
|
388 |
+
processor = SlicedAttnProcessor(slice_size)
|
389 |
+
elif self.added_kv_proj_dim is not None:
|
390 |
+
processor = AttnAddedKVProcessor()
|
391 |
+
else:
|
392 |
+
# set attention processor
|
393 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
394 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
395 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
396 |
+
processor = (
|
397 |
+
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
|
398 |
+
)
|
399 |
+
|
400 |
+
self.set_processor(processor)
|
401 |
+
|
402 |
+
def set_processor(self, processor: "AttnProcessor", _remove_lora: bool = False) -> None:
|
403 |
+
r"""
|
404 |
+
Set the attention processor to use.
|
405 |
+
|
406 |
+
Args:
|
407 |
+
processor (`AttnProcessor`):
|
408 |
+
The attention processor to use.
|
409 |
+
_remove_lora (`bool`, *optional*, defaults to `False`):
|
410 |
+
Set to `True` to remove LoRA layers from the model.
|
411 |
+
"""
|
412 |
+
if not USE_PEFT_BACKEND and hasattr(self, "processor") and _remove_lora and self.to_q.lora_layer is not None:
|
413 |
+
deprecate(
|
414 |
+
"set_processor to offload LoRA",
|
415 |
+
"0.26.0",
|
416 |
+
"In detail, removing LoRA layers via calling `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.",
|
417 |
+
)
|
418 |
+
# TODO(Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete
|
419 |
+
# We need to remove all LoRA layers
|
420 |
+
# Don't forget to remove ALL `_remove_lora` from the codebase
|
421 |
+
for module in self.modules():
|
422 |
+
if hasattr(module, "set_lora_layer"):
|
423 |
+
module.set_lora_layer(None)
|
424 |
+
|
425 |
+
# if current processor is in `self._modules` and if passed `processor` is not, we need to
|
426 |
+
# pop `processor` from `self._modules`
|
427 |
+
if (
|
428 |
+
hasattr(self, "processor")
|
429 |
+
and isinstance(self.processor, torch.nn.Module)
|
430 |
+
and not isinstance(processor, torch.nn.Module)
|
431 |
+
):
|
432 |
+
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
|
433 |
+
self._modules.pop("processor")
|
434 |
+
|
435 |
+
self.processor = processor
|
436 |
+
|
437 |
+
def get_processor(self, return_deprecated_lora: bool = False):
|
438 |
+
r"""
|
439 |
+
Get the attention processor in use.
|
440 |
+
|
441 |
+
Args:
|
442 |
+
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
|
443 |
+
Set to `True` to return the deprecated LoRA attention processor.
|
444 |
+
|
445 |
+
Returns:
|
446 |
+
"AttentionProcessor": The attention processor in use.
|
447 |
+
"""
|
448 |
+
if not return_deprecated_lora:
|
449 |
+
return self.processor
|
450 |
+
|
451 |
+
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
|
452 |
+
# serialization format for LoRA Attention Processors. It should be deleted once the integration
|
453 |
+
# with PEFT is completed.
|
454 |
+
is_lora_activated = {
|
455 |
+
name: module.lora_layer is not None
|
456 |
+
for name, module in self.named_modules()
|
457 |
+
if hasattr(module, "lora_layer")
|
458 |
+
}
|
459 |
+
|
460 |
+
# 1. if no layer has a LoRA activated we can return the processor as usual
|
461 |
+
if not any(is_lora_activated.values()):
|
462 |
+
return self.processor
|
463 |
+
|
464 |
+
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
|
465 |
+
is_lora_activated.pop("add_k_proj", None)
|
466 |
+
is_lora_activated.pop("add_v_proj", None)
|
467 |
+
# 2. else it is not posssible that only some layers have LoRA activated
|
468 |
+
if not all(is_lora_activated.values()):
|
469 |
+
raise ValueError(
|
470 |
+
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
|
471 |
+
)
|
472 |
+
|
473 |
+
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
|
474 |
+
non_lora_processor_cls_name = self.processor.__class__.__name__
|
475 |
+
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)
|
476 |
+
|
477 |
+
hidden_size = self.inner_dim
|
478 |
+
|
479 |
+
# now create a LoRA attention processor from the LoRA layers
|
480 |
+
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
|
481 |
+
kwargs = {
|
482 |
+
"cross_attention_dim": self.cross_attention_dim,
|
483 |
+
"rank": self.to_q.lora_layer.rank,
|
484 |
+
"network_alpha": self.to_q.lora_layer.network_alpha,
|
485 |
+
"q_rank": self.to_q.lora_layer.rank,
|
486 |
+
"q_hidden_size": self.to_q.lora_layer.out_features,
|
487 |
+
"k_rank": self.to_k.lora_layer.rank,
|
488 |
+
"k_hidden_size": self.to_k.lora_layer.out_features,
|
489 |
+
"v_rank": self.to_v.lora_layer.rank,
|
490 |
+
"v_hidden_size": self.to_v.lora_layer.out_features,
|
491 |
+
"out_rank": self.to_out[0].lora_layer.rank,
|
492 |
+
"out_hidden_size": self.to_out[0].lora_layer.out_features,
|
493 |
+
}
|
494 |
+
|
495 |
+
if hasattr(self.processor, "attention_op"):
|
496 |
+
kwargs["attention_op"] = self.processor.attention_op
|
497 |
+
|
498 |
+
lora_processor = lora_processor_cls(hidden_size, **kwargs)
|
499 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
500 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
501 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
502 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
503 |
+
elif lora_processor_cls == LoRAAttnAddedKVProcessor:
|
504 |
+
lora_processor = lora_processor_cls(
|
505 |
+
hidden_size,
|
506 |
+
cross_attention_dim=self.add_k_proj.weight.shape[0],
|
507 |
+
rank=self.to_q.lora_layer.rank,
|
508 |
+
network_alpha=self.to_q.lora_layer.network_alpha,
|
509 |
+
)
|
510 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
511 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
512 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
513 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
514 |
+
|
515 |
+
# only save if used
|
516 |
+
if self.add_k_proj.lora_layer is not None:
|
517 |
+
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
|
518 |
+
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
|
519 |
+
else:
|
520 |
+
lora_processor.add_k_proj_lora = None
|
521 |
+
lora_processor.add_v_proj_lora = None
|
522 |
+
else:
|
523 |
+
raise ValueError(f"{lora_processor_cls} does not exist.")
|
524 |
+
|
525 |
+
return lora_processor
|
526 |
+
|
527 |
+
def forward(
|
528 |
+
self,
|
529 |
+
hidden_states: torch.FloatTensor,
|
530 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
531 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
532 |
+
**cross_attention_kwargs,
|
533 |
+
) -> torch.Tensor:
|
534 |
+
r"""
|
535 |
+
The forward method of the `Attention` class.
|
536 |
+
|
537 |
+
Args:
|
538 |
+
hidden_states (`torch.Tensor`):
|
539 |
+
The hidden states of the query.
|
540 |
+
encoder_hidden_states (`torch.Tensor`, *optional*):
|
541 |
+
The hidden states of the encoder.
|
542 |
+
attention_mask (`torch.Tensor`, *optional*):
|
543 |
+
The attention mask to use. If `None`, no mask is applied.
|
544 |
+
**cross_attention_kwargs:
|
545 |
+
Additional keyword arguments to pass along to the cross attention.
|
546 |
+
|
547 |
+
Returns:
|
548 |
+
`torch.Tensor`: The output of the attention layer.
|
549 |
+
"""
|
550 |
+
# The `Attention` class can call different attention processors / attention functions
|
551 |
+
# here we simply pass along all tensors to the selected processor class
|
552 |
+
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
|
553 |
+
return self.processor(
|
554 |
+
self,
|
555 |
+
hidden_states,
|
556 |
+
encoder_hidden_states=encoder_hidden_states,
|
557 |
+
attention_mask=attention_mask,
|
558 |
+
**cross_attention_kwargs,
|
559 |
+
)
|
560 |
+
|
561 |
+
def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
|
562 |
+
r"""
|
563 |
+
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
|
564 |
+
is the number of heads initialized while constructing the `Attention` class.
|
565 |
+
|
566 |
+
Args:
|
567 |
+
tensor (`torch.Tensor`): The tensor to reshape.
|
568 |
+
|
569 |
+
Returns:
|
570 |
+
`torch.Tensor`: The reshaped tensor.
|
571 |
+
"""
|
572 |
+
head_size = self.heads
|
573 |
+
batch_size, seq_len, dim = tensor.shape
|
574 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
575 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
576 |
+
return tensor
|
577 |
+
|
578 |
+
def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
|
579 |
+
r"""
|
580 |
+
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
|
581 |
+
the number of heads initialized while constructing the `Attention` class.
|
582 |
+
|
583 |
+
Args:
|
584 |
+
tensor (`torch.Tensor`): The tensor to reshape.
|
585 |
+
out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
|
586 |
+
reshaped to `[batch_size * heads, seq_len, dim // heads]`.
|
587 |
+
|
588 |
+
Returns:
|
589 |
+
`torch.Tensor`: The reshaped tensor.
|
590 |
+
"""
|
591 |
+
head_size = self.heads
|
592 |
+
batch_size, seq_len, dim = tensor.shape
|
593 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
594 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
595 |
+
|
596 |
+
if out_dim == 3:
|
597 |
+
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
|
598 |
+
|
599 |
+
return tensor
|
600 |
+
|
601 |
+
def get_attention_scores(
|
602 |
+
self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None
|
603 |
+
) -> torch.Tensor:
|
604 |
+
r"""
|
605 |
+
Compute the attention scores.
|
606 |
+
|
607 |
+
Args:
|
608 |
+
query (`torch.Tensor`): The query tensor.
|
609 |
+
key (`torch.Tensor`): The key tensor.
|
610 |
+
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
|
611 |
+
|
612 |
+
Returns:
|
613 |
+
`torch.Tensor`: The attention probabilities/scores.
|
614 |
+
"""
|
615 |
+
dtype = query.dtype
|
616 |
+
if self.upcast_attention:
|
617 |
+
query = query.float()
|
618 |
+
key = key.float()
|
619 |
+
|
620 |
+
if attention_mask is None:
|
621 |
+
baddbmm_input = torch.empty(
|
622 |
+
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
|
623 |
+
)
|
624 |
+
beta = 0
|
625 |
+
else:
|
626 |
+
baddbmm_input = attention_mask
|
627 |
+
beta = 1
|
628 |
+
|
629 |
+
attention_scores = torch.baddbmm(
|
630 |
+
baddbmm_input,
|
631 |
+
query,
|
632 |
+
key.transpose(-1, -2),
|
633 |
+
beta=beta,
|
634 |
+
alpha=self.scale,
|
635 |
+
)
|
636 |
+
del baddbmm_input
|
637 |
+
|
638 |
+
if self.upcast_softmax:
|
639 |
+
attention_scores = attention_scores.float()
|
640 |
+
|
641 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
642 |
+
del attention_scores
|
643 |
+
|
644 |
+
attention_probs = attention_probs.to(dtype)
|
645 |
+
|
646 |
+
return attention_probs
|
647 |
+
|
648 |
+
def prepare_attention_mask(
|
649 |
+
self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3, head_size = None,
|
650 |
+
) -> torch.Tensor:
|
651 |
+
r"""
|
652 |
+
Prepare the attention mask for the attention computation.
|
653 |
+
|
654 |
+
Args:
|
655 |
+
attention_mask (`torch.Tensor`):
|
656 |
+
The attention mask to prepare.
|
657 |
+
target_length (`int`):
|
658 |
+
The target length of the attention mask. This is the length of the attention mask after padding.
|
659 |
+
batch_size (`int`):
|
660 |
+
The batch size, which is used to repeat the attention mask.
|
661 |
+
out_dim (`int`, *optional*, defaults to `3`):
|
662 |
+
The output dimension of the attention mask. Can be either `3` or `4`.
|
663 |
+
|
664 |
+
Returns:
|
665 |
+
`torch.Tensor`: The prepared attention mask.
|
666 |
+
"""
|
667 |
+
head_size = head_size if head_size is not None else self.heads
|
668 |
+
if attention_mask is None:
|
669 |
+
return attention_mask
|
670 |
+
|
671 |
+
current_length: int = attention_mask.shape[-1]
|
672 |
+
if current_length != target_length:
|
673 |
+
if attention_mask.device.type == "mps":
|
674 |
+
# HACK: MPS: Does not support padding by greater than dimension of input tensor.
|
675 |
+
# Instead, we can manually construct the padding tensor.
|
676 |
+
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
|
677 |
+
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
|
678 |
+
attention_mask = torch.cat([attention_mask, padding], dim=2)
|
679 |
+
else:
|
680 |
+
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
|
681 |
+
# we want to instead pad by (0, remaining_length), where remaining_length is:
|
682 |
+
# remaining_length: int = target_length - current_length
|
683 |
+
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
|
684 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
685 |
+
|
686 |
+
if out_dim == 3:
|
687 |
+
if attention_mask.shape[0] < batch_size * head_size:
|
688 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
|
689 |
+
elif out_dim == 4:
|
690 |
+
attention_mask = attention_mask.unsqueeze(1)
|
691 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=1)
|
692 |
+
|
693 |
+
return attention_mask
|
694 |
+
|
695 |
+
def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
696 |
+
r"""
|
697 |
+
Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
|
698 |
+
`Attention` class.
|
699 |
+
|
700 |
+
Args:
|
701 |
+
encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.
|
702 |
+
|
703 |
+
Returns:
|
704 |
+
`torch.Tensor`: The normalized encoder hidden states.
|
705 |
+
"""
|
706 |
+
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"
|
707 |
+
|
708 |
+
if isinstance(self.norm_cross, nn.LayerNorm):
|
709 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
710 |
+
elif isinstance(self.norm_cross, nn.GroupNorm):
|
711 |
+
# Group norm norms along the channels dimension and expects
|
712 |
+
# input to be in the shape of (N, C, *). In this case, we want
|
713 |
+
# to norm along the hidden dimension, so we need to move
|
714 |
+
# (batch_size, sequence_length, hidden_size) ->
|
715 |
+
# (batch_size, hidden_size, sequence_length)
|
716 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
717 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
718 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
719 |
+
else:
|
720 |
+
assert False
|
721 |
+
|
722 |
+
return encoder_hidden_states
|
723 |
+
|
724 |
+
def _init_compress(self):
|
725 |
+
self.sr.bias.data.zero_()
|
726 |
+
self.norm = nn.LayerNorm(self.inner_dim)
|
727 |
+
|
728 |
+
|
729 |
+
class AttnProcessor2_0(nn.Module):
|
730 |
+
r"""
|
731 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
732 |
+
"""
|
733 |
+
|
734 |
+
def __init__(self, attention_mode="xformers", use_rope=False, interpolation_scale_thw=None):
|
735 |
+
super().__init__()
|
736 |
+
self.attention_mode = attention_mode
|
737 |
+
self.use_rope = use_rope
|
738 |
+
self.interpolation_scale_thw = interpolation_scale_thw
|
739 |
+
|
740 |
+
if self.use_rope:
|
741 |
+
self._init_rope(interpolation_scale_thw)
|
742 |
+
|
743 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
744 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
745 |
+
|
746 |
+
def _init_rope(self, interpolation_scale_thw):
|
747 |
+
self.rope = RoPE3D(interpolation_scale_thw=interpolation_scale_thw)
|
748 |
+
self.position_getter = PositionGetter3D()
|
749 |
+
|
750 |
+
def __call__(
|
751 |
+
self,
|
752 |
+
attn: Attention,
|
753 |
+
hidden_states: torch.FloatTensor,
|
754 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
755 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
756 |
+
temb: Optional[torch.FloatTensor] = None,
|
757 |
+
frame: int = 8,
|
758 |
+
height: int = 16,
|
759 |
+
width: int = 16,
|
760 |
+
) -> torch.FloatTensor:
|
761 |
+
|
762 |
+
residual = hidden_states
|
763 |
+
|
764 |
+
if attn.spatial_norm is not None:
|
765 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
766 |
+
|
767 |
+
input_ndim = hidden_states.ndim
|
768 |
+
|
769 |
+
if input_ndim == 4:
|
770 |
+
batch_size, channel, height, width = hidden_states.shape
|
771 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
772 |
+
|
773 |
+
|
774 |
+
batch_size, sequence_length, _ = (
|
775 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
776 |
+
)
|
777 |
+
|
778 |
+
if attention_mask is not None and self.attention_mode == 'xformers':
|
779 |
+
attention_heads = attn.heads
|
780 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, head_size=attention_heads)
|
781 |
+
attention_mask = attention_mask.view(batch_size, attention_heads, -1, attention_mask.shape[-1])
|
782 |
+
else:
|
783 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
784 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
785 |
+
# (batch, heads, source_length, target_length)
|
786 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
787 |
+
|
788 |
+
if attn.group_norm is not None:
|
789 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
790 |
+
|
791 |
+
query = attn.to_q(hidden_states)
|
792 |
+
|
793 |
+
if encoder_hidden_states is None:
|
794 |
+
encoder_hidden_states = hidden_states
|
795 |
+
elif attn.norm_cross:
|
796 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
797 |
+
|
798 |
+
key = attn.to_k(encoder_hidden_states)
|
799 |
+
value = attn.to_v(encoder_hidden_states)
|
800 |
+
|
801 |
+
|
802 |
+
|
803 |
+
attn_heads = attn.heads
|
804 |
+
|
805 |
+
inner_dim = key.shape[-1]
|
806 |
+
head_dim = inner_dim // attn_heads
|
807 |
+
|
808 |
+
query = query.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
|
809 |
+
key = key.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
|
810 |
+
value = value.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
|
811 |
+
|
812 |
+
|
813 |
+
if self.use_rope:
|
814 |
+
# require the shape of (batch_size x nheads x ntokens x dim)
|
815 |
+
pos_thw = self.position_getter(batch_size, t=frame, h=height, w=width, device=query.device)
|
816 |
+
query = self.rope(query, pos_thw)
|
817 |
+
key = self.rope(key, pos_thw)
|
818 |
+
|
819 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
820 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
821 |
+
# if self.attention_mode == 'flash':
|
822 |
+
# # assert attention_mask is None, 'flash-attn do not support attention_mask'
|
823 |
+
# with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
|
824 |
+
# hidden_states = F.scaled_dot_product_attention(
|
825 |
+
# query, key, value, dropout_p=0.0, is_causal=False
|
826 |
+
# )
|
827 |
+
# elif self.attention_mode == 'xformers':
|
828 |
+
# with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
|
829 |
+
# hidden_states = F.scaled_dot_product_attention(
|
830 |
+
# query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
831 |
+
# )
|
832 |
+
|
833 |
+
# Use basic attention implementation
|
834 |
+
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_math=True, enable_mem_efficient=True):
|
835 |
+
hidden_states = F.scaled_dot_product_attention(
|
836 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
837 |
+
)
|
838 |
+
|
839 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn_heads * head_dim)
|
840 |
+
hidden_states = hidden_states.to(query.dtype)
|
841 |
+
|
842 |
+
# linear proj
|
843 |
+
hidden_states = attn.to_out[0](hidden_states)
|
844 |
+
# dropout
|
845 |
+
hidden_states = attn.to_out[1](hidden_states)
|
846 |
+
|
847 |
+
if input_ndim == 4:
|
848 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
849 |
+
|
850 |
+
if attn.residual_connection:
|
851 |
+
hidden_states = hidden_states + residual
|
852 |
+
|
853 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
854 |
+
|
855 |
+
return hidden_states
|
856 |
+
|
857 |
+
class FeedForward(nn.Module):
|
858 |
+
r"""
|
859 |
+
A feed-forward layer.
|
860 |
+
|
861 |
+
Parameters:
|
862 |
+
dim (`int`): The number of channels in the input.
|
863 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
864 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
865 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
866 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
867 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
868 |
+
"""
|
869 |
+
|
870 |
+
def __init__(
|
871 |
+
self,
|
872 |
+
dim: int,
|
873 |
+
dim_out: Optional[int] = None,
|
874 |
+
mult: int = 4,
|
875 |
+
dropout: float = 0.0,
|
876 |
+
activation_fn: str = "geglu",
|
877 |
+
final_dropout: bool = False,
|
878 |
+
):
|
879 |
+
super().__init__()
|
880 |
+
inner_dim = int(dim * mult)
|
881 |
+
dim_out = dim_out if dim_out is not None else dim
|
882 |
+
linear_cls = nn.Linear
|
883 |
+
|
884 |
+
if activation_fn == "gelu":
|
885 |
+
act_fn = GELU(dim, inner_dim)
|
886 |
+
if activation_fn == "gelu-approximate":
|
887 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
888 |
+
elif activation_fn == "geglu":
|
889 |
+
act_fn = GEGLU(dim, inner_dim)
|
890 |
+
elif activation_fn == "geglu-approximate":
|
891 |
+
act_fn = ApproximateGELU(dim, inner_dim)
|
892 |
+
|
893 |
+
self.net = nn.ModuleList([])
|
894 |
+
# project in
|
895 |
+
self.net.append(act_fn)
|
896 |
+
# project dropout
|
897 |
+
self.net.append(nn.Dropout(dropout))
|
898 |
+
# project out
|
899 |
+
self.net.append(linear_cls(inner_dim, dim_out))
|
900 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
901 |
+
if final_dropout:
|
902 |
+
self.net.append(nn.Dropout(dropout))
|
903 |
+
|
904 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
905 |
+
for module in self.net:
|
906 |
+
hidden_states = module(hidden_states)
|
907 |
+
return hidden_states
|
908 |
+
|
909 |
+
|
910 |
+
@maybe_allow_in_graph
|
911 |
+
class BasicTransformerBlock(nn.Module):
|
912 |
+
r"""
|
913 |
+
A basic Transformer block.
|
914 |
+
|
915 |
+
Parameters:
|
916 |
+
dim (`int`): The number of channels in the input and output.
|
917 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
918 |
+
attention_head_dim (`int`): The number of channels in each head.
|
919 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
920 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
921 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
922 |
+
num_embeds_ada_norm (:
|
923 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
924 |
+
attention_bias (:
|
925 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
926 |
+
only_cross_attention (`bool`, *optional*):
|
927 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
928 |
+
double_self_attention (`bool`, *optional*):
|
929 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
930 |
+
upcast_attention (`bool`, *optional*):
|
931 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
932 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
933 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
934 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
935 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
936 |
+
final_dropout (`bool` *optional*, defaults to False):
|
937 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
938 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
939 |
+
The type of positional embeddings to apply to.
|
940 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
941 |
+
The maximum number of positional embeddings to apply.
|
942 |
+
"""
|
943 |
+
|
944 |
+
def __init__(
|
945 |
+
self,
|
946 |
+
dim: int,
|
947 |
+
num_attention_heads: int,
|
948 |
+
attention_head_dim: int,
|
949 |
+
dropout=0.0,
|
950 |
+
cross_attention_dim: Optional[int] = None,
|
951 |
+
activation_fn: str = "geglu",
|
952 |
+
num_embeds_ada_norm: Optional[int] = None,
|
953 |
+
attention_bias: bool = False,
|
954 |
+
only_cross_attention: bool = False,
|
955 |
+
double_self_attention: bool = False,
|
956 |
+
upcast_attention: bool = False,
|
957 |
+
norm_elementwise_affine: bool = True,
|
958 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
959 |
+
norm_eps: float = 1e-5,
|
960 |
+
final_dropout: bool = False,
|
961 |
+
positional_embeddings: Optional[str] = None,
|
962 |
+
num_positional_embeddings: Optional[int] = None,
|
963 |
+
sa_attention_mode: str = "flash",
|
964 |
+
ca_attention_mode: str = "xformers",
|
965 |
+
use_rope: bool = False,
|
966 |
+
interpolation_scale_thw: Tuple[int] = (1, 1, 1),
|
967 |
+
block_idx: Optional[int] = None,
|
968 |
+
):
|
969 |
+
super().__init__()
|
970 |
+
self.only_cross_attention = only_cross_attention
|
971 |
+
|
972 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
973 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
974 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
975 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
976 |
+
|
977 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
978 |
+
raise ValueError(
|
979 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
980 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
981 |
+
)
|
982 |
+
|
983 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
984 |
+
raise ValueError(
|
985 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
986 |
+
)
|
987 |
+
|
988 |
+
if positional_embeddings == "sinusoidal":
|
989 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
990 |
+
else:
|
991 |
+
self.pos_embed = None
|
992 |
+
|
993 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
994 |
+
# 1. Self-Attn
|
995 |
+
if self.use_ada_layer_norm:
|
996 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
997 |
+
elif self.use_ada_layer_norm_zero:
|
998 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
999 |
+
else:
|
1000 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
1001 |
+
|
1002 |
+
self.attn1 = Attention(
|
1003 |
+
query_dim=dim,
|
1004 |
+
heads=num_attention_heads,
|
1005 |
+
dim_head=attention_head_dim,
|
1006 |
+
dropout=dropout,
|
1007 |
+
bias=attention_bias,
|
1008 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
1009 |
+
upcast_attention=upcast_attention,
|
1010 |
+
attention_mode=sa_attention_mode,
|
1011 |
+
use_rope=use_rope,
|
1012 |
+
interpolation_scale_thw=interpolation_scale_thw,
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
# 2. Cross-Attn
|
1016 |
+
if cross_attention_dim is not None or double_self_attention:
|
1017 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
1018 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
1019 |
+
# the second cross attention block.
|
1020 |
+
self.norm2 = (
|
1021 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
1022 |
+
if self.use_ada_layer_norm
|
1023 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
1024 |
+
)
|
1025 |
+
self.attn2 = Attention(
|
1026 |
+
query_dim=dim,
|
1027 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
1028 |
+
heads=num_attention_heads,
|
1029 |
+
dim_head=attention_head_dim,
|
1030 |
+
dropout=dropout,
|
1031 |
+
bias=attention_bias,
|
1032 |
+
upcast_attention=upcast_attention,
|
1033 |
+
attention_mode=ca_attention_mode, # only xformers support attention_mask
|
1034 |
+
use_rope=False, # do not position in cross attention
|
1035 |
+
interpolation_scale_thw=interpolation_scale_thw,
|
1036 |
+
) # is self-attn if encoder_hidden_states is none
|
1037 |
+
else:
|
1038 |
+
self.norm2 = None
|
1039 |
+
self.attn2 = None
|
1040 |
+
|
1041 |
+
# 3. Feed-forward
|
1042 |
+
|
1043 |
+
if not self.use_ada_layer_norm_single:
|
1044 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
1045 |
+
|
1046 |
+
self.ff = FeedForward(
|
1047 |
+
dim,
|
1048 |
+
dropout=dropout,
|
1049 |
+
activation_fn=activation_fn,
|
1050 |
+
final_dropout=final_dropout,
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
# 5. Scale-shift for PixArt-Alpha.
|
1054 |
+
if self.use_ada_layer_norm_single:
|
1055 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
1056 |
+
|
1057 |
+
|
1058 |
+
def forward(
|
1059 |
+
self,
|
1060 |
+
hidden_states: torch.FloatTensor,
|
1061 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1062 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1063 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1064 |
+
timestep: Optional[torch.LongTensor] = None,
|
1065 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
1066 |
+
class_labels: Optional[torch.LongTensor] = None,
|
1067 |
+
frame: int = None,
|
1068 |
+
height: int = None,
|
1069 |
+
width: int = None,
|
1070 |
+
) -> torch.FloatTensor:
|
1071 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
1072 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
1073 |
+
|
1074 |
+
# 0. Self-Attention
|
1075 |
+
batch_size = hidden_states.shape[0]
|
1076 |
+
|
1077 |
+
if self.use_ada_layer_norm:
|
1078 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
1079 |
+
elif self.use_ada_layer_norm_zero:
|
1080 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
1081 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
1082 |
+
)
|
1083 |
+
elif self.use_layer_norm:
|
1084 |
+
norm_hidden_states = self.norm1(hidden_states)
|
1085 |
+
elif self.use_ada_layer_norm_single:
|
1086 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
1087 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
1088 |
+
).chunk(6, dim=1)
|
1089 |
+
norm_hidden_states = self.norm1(hidden_states)
|
1090 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
1091 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
1092 |
+
else:
|
1093 |
+
raise ValueError("Incorrect norm used")
|
1094 |
+
|
1095 |
+
if self.pos_embed is not None:
|
1096 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1097 |
+
|
1098 |
+
attn_output = self.attn1(
|
1099 |
+
norm_hidden_states,
|
1100 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
1101 |
+
attention_mask=attention_mask,
|
1102 |
+
frame=frame,
|
1103 |
+
height=height,
|
1104 |
+
width=width,
|
1105 |
+
**cross_attention_kwargs,
|
1106 |
+
)
|
1107 |
+
if self.use_ada_layer_norm_zero:
|
1108 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
1109 |
+
elif self.use_ada_layer_norm_single:
|
1110 |
+
attn_output = gate_msa * attn_output
|
1111 |
+
|
1112 |
+
hidden_states = attn_output + hidden_states
|
1113 |
+
if hidden_states.ndim == 4:
|
1114 |
+
hidden_states = hidden_states.squeeze(1)
|
1115 |
+
|
1116 |
+
# 1. Cross-Attention
|
1117 |
+
if self.attn2 is not None:
|
1118 |
+
|
1119 |
+
if self.use_ada_layer_norm:
|
1120 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
1121 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
1122 |
+
norm_hidden_states = self.norm2(hidden_states)
|
1123 |
+
elif self.use_ada_layer_norm_single:
|
1124 |
+
# For PixArt norm2 isn't applied here:
|
1125 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
1126 |
+
norm_hidden_states = hidden_states
|
1127 |
+
else:
|
1128 |
+
raise ValueError("Incorrect norm")
|
1129 |
+
|
1130 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
1131 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1132 |
+
|
1133 |
+
attn_output = self.attn2(
|
1134 |
+
norm_hidden_states,
|
1135 |
+
encoder_hidden_states=encoder_hidden_states,
|
1136 |
+
attention_mask=encoder_attention_mask,
|
1137 |
+
**cross_attention_kwargs,
|
1138 |
+
)
|
1139 |
+
hidden_states = attn_output + hidden_states
|
1140 |
+
|
1141 |
+
|
1142 |
+
# 2. Feed-forward
|
1143 |
+
if not self.use_ada_layer_norm_single:
|
1144 |
+
norm_hidden_states = self.norm3(hidden_states)
|
1145 |
+
|
1146 |
+
if self.use_ada_layer_norm_zero:
|
1147 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
1148 |
+
|
1149 |
+
if self.use_ada_layer_norm_single:
|
1150 |
+
norm_hidden_states = self.norm2(hidden_states)
|
1151 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
1152 |
+
|
1153 |
+
ff_output = self.ff(norm_hidden_states)
|
1154 |
+
|
1155 |
+
if self.use_ada_layer_norm_zero:
|
1156 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
1157 |
+
elif self.use_ada_layer_norm_single:
|
1158 |
+
ff_output = gate_mlp * ff_output
|
1159 |
+
|
1160 |
+
|
1161 |
+
hidden_states = ff_output + hidden_states
|
1162 |
+
if hidden_states.ndim == 4:
|
1163 |
+
hidden_states = hidden_states.squeeze(1)
|
1164 |
+
|
1165 |
+
return hidden_states
|
1166 |
+
|
1167 |
+
|
1168 |
+
class AdaLayerNormSingle(nn.Module):
|
1169 |
+
r"""
|
1170 |
+
Norm layer adaptive layer norm single (adaLN-single).
|
1171 |
+
|
1172 |
+
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
|
1173 |
+
|
1174 |
+
Parameters:
|
1175 |
+
embedding_dim (`int`): The size of each embedding vector.
|
1176 |
+
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
|
1177 |
+
"""
|
1178 |
+
|
1179 |
+
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False):
|
1180 |
+
super().__init__()
|
1181 |
+
|
1182 |
+
self.emb = CombinedTimestepSizeEmbeddings(
|
1183 |
+
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
self.silu = nn.SiLU()
|
1187 |
+
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
|
1188 |
+
|
1189 |
+
def forward(
|
1190 |
+
self,
|
1191 |
+
timestep: torch.Tensor,
|
1192 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
1193 |
+
batch_size: int = None,
|
1194 |
+
hidden_dtype: Optional[torch.dtype] = None,
|
1195 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
1196 |
+
# No modulation happening here.
|
1197 |
+
embedded_timestep = self.emb(
|
1198 |
+
timestep, batch_size=batch_size, hidden_dtype=hidden_dtype, resolution=None, aspect_ratio=None
|
1199 |
+
)
|
1200 |
+
return self.linear(self.silu(embedded_timestep)), embedded_timestep
|